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Abstract

The realistic description of reservoirs for the purpose of ow simulation is a longstanding

problem. The true reservoir description will never be known. The integration of dynamic

production data reduces uncertainty; the reduction in uncertainty is proportional to the

amount of historical data and the interference between the wells. This thesis develops

methods to incorporate historical production data into numerical reservoir models.

The �rst problem tackled is the simultaneous inversion of porosity and permeability us-

ing a geostatistics-based integration algorithm. The algorithm is developed and a numerical

code is implemented. Some illustrative examples are presented and sensitivity issues are

analysed.

Production data informs the nature of heterogeneity in the reservoir. The inversion

algorithm is modi�ed to permit inversion of variograms. The predictive capability of the

reservoir models is improved with the updating of the variogram through inversion. The

algorithm was also extended to invert for fault zone properties. The fault locations are as-

sumed known through seismic and the properties are inferred with the available production

data. The advantages and the limitations are identi�ed.
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�1: correlation length of maximum continuity

�2: correlation length of minimum continuity
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: anisotropy ratio of permeability �eld

ln(k): natural logarithm of absolute permeability ln(md)

LS: subscript for least square

m: slope of the semilog plot

�: viscosity (cp)
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: partial derivative of pi with respect to �j

@pi
@yj

: partial derivative of pi with respect to yj

�: porosity

�i: porosity at location i

��i: porosity perturbation due to master point at location i

��: average porosity perturbation



	(k): Euler's Psi function of argument k

q: ow rate (STB/d)

q(u; t): observed well ow rate at location u and time t

q(u0; t): observed well ow rate at location u0 and time t

qo: oil ow rate (STB/d)

qg: gas ow rate (STB/d)

qw: water ow rate (STB/d)

qsls : ow rate associated with streamline s

r: radial distance from the well bore (ft)

rD: dimensionless radius

rw: well bore radius (ft)

Rn : Euclidean space of n-tuple

�: correlation coeÆcient

�: correlation coeÆcient between porosity and log permeability

S: sensitivity coeÆcient matrix, also saturation

sk;f;m;t(j): sensitivity coeÆcient of fractional ow rate at point j due to permeability per-

turbation at master point location m

sk;p;m;t(i): sensitivity coeÆcient of pressure at point i due to permeability perturbation at

master point location m

�2: variance

t: time (hours)

ti: time level for simulation

tD: dimensionless time

T : transmissibility



T1;2: transmissibility term at the face of two adjacent grid blocks 1 and 2

T : superscript for transposition

��i;j: porosity kriging weights at location i for porosity data at location j

�yi;j: log permeability kriging weights at location i for log permeability data at location j

�s: time-of-ight of streamline s

��s;c: associated time-of-ight for streamline s to pass through cell c

u;u 2 A: a location within the entire space, A

V : annular region

w: number of well locations (w = 1; : : : ; nw)

W1=2;1=2(z): Whittaker's function of arguments z, 1/ 2 and 1/2

Wf (j; t): weight assigned to fractional ow rate data at well j and time t

Wp(i; t): weight assigned to pressure data at well i and time t

WLS: subscript for weighted least square

x; y; z: dimensions of cell (Cartesian coordinate system)

�i: log permeability collocated kriging weights at location i for porosity data at location i

�x;�y;�z: set out changes in cell dimensions

y: y = ln(k)

yi: y variable at location i

�yi: log permeability perturbation due to master point at location i

�y: average log permeability perturbation

@yi
@�j

: partial derivative of yi with respect to �j

@yi
@yj

: partial derivative of yi with respect to yj
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CPU: central processing unit

GPST: generalized pulse spectrum technique

mNAD: mean normalized absolute deviation

mNE: mean normalized error

pdf: probability density function

SGI: Silicon Graphics, Inc.
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Chapter 1

Introduction

An essential element for successful reservoir management is the ability to reliably forecast
the reservoir performance with as little uncertainty as possible. Predicting reservoir perfor-

mance depends mainly on two aspects among myriad of factors. First, one must be able to

identify the physics of the subsurface ow and adequately engineer a mathematical model
to simulate such phenomena. Second, one must have `appropriate' characterization of the

reservoir through some discretized numerical reservoir models. This thesis focuses primarily

on the latter aspect. Incomplete data and inability to model the physics of uid ow at a
suitably small scale lead to uncertainty. Subsurface reservoir models that \by construction"

honor the historical production data should yield signi�cantly more accurate predictions of

reservoir performance with reduced uncertainty than those that do not. This research aims
to develop new techniques that link available production data and static information on the

distribution of permeability and porosity in reservoir models.
The motivation for this research was the recognition that there is strong need for im-

provement in the available techniques of dynamic data integration to construct realistic

reservoir models. Current modeling techniques su�er from the limitation of not accommo-
dating realistically complex heterogeneities of the subsurface reservoir system. Incorpora-

tion of simplistic physics and homogenization of critical reservoir features are still the only

way to resolve this reservoir characterization problem. The reason for adapting such naive
approaches is not the lack of motivation, but the problem is an inverse problem and highly

underdetermined.

This research does not search for a panacea of this long-standing issue in reservoir char-
acterization; this attempts to incrementally improve upon the current techniques. Under-

taking of this research evolved through a \roller-coaster" learning experience corroborating
the presence of enormous diÆculties associated with the inverse problem. Ideas had to be

modi�ed at di�erent stages and the scope of the work had to be narrowed to accomodate

practical problems.

Problem Description

Reservoir development plan using detailed 3D reservoir models requires models of structure,

stratigraphy, and properties. Interpretive, deterministic and geostatistical techniques for

constructing models of lithofacies and properties are used that constrain the models to
static data from core, logs, seismic, and geologic interpretation. However, honoring all

data including the dynamic pressure or historical production data is quite diÆcult. In
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practice, trial-and-error history matching is still the most common approach at the �nal

stage of modeling. The problem of fully integrating production and pressure data in the

construction of reservoir models lends itself to a variety of approaches. Property models
within the volume of inuence of a well are generated through a one-step mathematical

inversion of the pressure response. The problems with these techniques are the intense

computations needed to generate a solution that is not unique and may be inconsistent with
some of the static data. In other approaches, the property models are generated in several

steps with a �rst-step coding of the well-derived data into a spatial property representation.
A detailed classi�cation of the techniques available for dynamic data integration is discussed

in Chapter 2.

1.1 Data Used in Reservoir Characterization

In the broader sense, available data [179] for reservoir characterization can be classi�ed into

geological data, geophysical data, and engineering data. Geological data arises from a vari-
ety of sources including core description, thin sections, microscopes, image analysis, X-ray

tomography, stable isotope analysis, sedimentological models, diagenetic models, markers,

interval de�nitions, maps, cross-sections, and remote sensing. Geophysical data available
for reservoir characterization can be from 2D and 3D seismic pro�le, cross-hole tomogra-

phy, multi-component seismic, vertical seismic pro�le, shear wave logging, and isochrons for

structure tops. Sources of engineering data include well log analysis, conventional and spe-
cial core analysis, pressure transient tests, production history, tracer test, CT scan, NMR

data, and drilling and completion information.

The primary objective of this research is integration of dynamic data in reservoir mod-
elling. The subsequent section describes dynamic data available for reservoir description.

1.2 Dynamic Data and Spatial Information

Di�erent sources of data have varying type and amount of information about the reservoir
heterogeneity. Each data type has the potential to inform us about some subset of spatial

characteristics. Scale and the support volume of the di�erent data sources also vary. The
spatial representations from some important data types and some issues concerning our

ability to extract these spatial data are listed below. Table 1.1 gives the information content

of some important data sources.

Mathematical inversion methods for single well test pressure data and interpretive tools
are largely in place [70, 101, 163, 177]. This is perhaps the subject of most well test analyses

research. Well test interpretation is a standard reservoir engineering practice. Some of

the typical single-well test data are RFT data, drawdown/buildup test data, variable rate
test data, production logs and permanent pressure gauges. For instance, interpretation of

RFT data is quite useful particularly for decisions like production strategy, change in well

con�gurations, well workovers or perforation jobs.

Compared to single-well test data, multiple-wells test data are more extensive in terms

of areal coverage and provide speci�c connectivity information between wells. Data suÆ-

ciency, i.e., whether suÆcient data are available to establish signi�cant contributions, is an
important issue. Suitable method to quantify connectivity between two locations is imper-

ative. The approach of geo-objects, collections of locations/blocks connected to each other,
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Data Available Information Content

Pressure as function of depth - Communication between strata
(e.g., Repeat Formation Tester ) - Communication across faults

- Location of uid contacts

Buildup/drawdown test - Distance to boundaries
p(t) - E�ective kh

- Flow regime (e.g., fractures)
- Aquifer inux/uid extent

Multirate test data - More details

Production logging (q(depth)) - Permeability of di�erent layers/strata
(ratio or \relative" k between layers)

Permanent pressure gauges - kh for coarse grid or information between wells
(p(t), t from 0 to present) - \Map" interwell region

- Boundaries and interwell communication

Interference tests - Presence of sealing faults
p(u; t), q(u; t) and - Fault transmissibility
p(u0; t), q(u0; t) - Qualitative measure of connectivity

- E�ective k
- Flow/pressure pathways

Tracer data - More unique model
- Tell how a well is isolated or connected with
other wells

P , qo, qg as functions of - kh at each well (relatively larger areas)
dimensionless time at each well - Drainage volume for each well

- Local facies information indirectly through
kro=krg ratios

- kcoarse scale e�ective permeability
- Interwell communication from fractional
ow/pressure data

Table 1.1: Typical dynamic data and their information content.
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is used for this purpose.

According to existing dominant production mechanisms, historical production data may

also be classi�ed into di�erent categories. The classi�cation can be with respect to reservoir
depletion with or without water drive, with gas-cap drive, water injection or gas injection.

Dynamic data integration technique in each of these reservoir cases has unique implemen-

tation issues.

Expansion drive and gravity segregation drive are the main sources of reservoir potential

for many reservoirs. Estimation procedure of drainage volume for each well should be

properly devised. Relative permeability ratios (gas to oil), kro
krg

, may also explain something
about the lithofacies proportions within drainage area, since di�erent facies usually have

di�erent kro
krg

ratios. One can have GOR data that provide useful information on reservoir
heterogeneities.

Before breakthrough of water, no new information on the spatial distribution of het-

erogeneities than that from single- or multiple-well test data is available. The data reveal
almost the same information as in the case of depletion without water drive. After water

breakthrough fractional recovery data (qw, qo) are available. Original water contact data

(e.g. surface-point connectivity), kcoarse scale e�ective permeability distribution may be ob-

tained from the available data. Also, kro
krw

may indicate facies proportions in the \contacted

region".

These data are similar to those available from water-drive depletion, except between
production wells and original gas-cap, instead of aquifer. Interwell connectivity data and

the stratigraphic surface correlation can be established. Fractional recovery data (krokrg
) may

indicate facies proportion.

More de�nitive determination of ke between wells, particularly after breakthrough, is

possible. Flow capacity (kh) around injection wells, connected volume between injec-
tor/producer pairs can be estimated. Breakthrough times may explain anisotropic vari-

ogram, interwell facies connectivity, and permeability distribution. Measurement of hetero-

geneities, calibration and calculation of connected volume from the 3D reservoir model are
crucial issues.

1.3 Outline of the Thesis

In this thesis, the topics are presented in the following sequence. Chapter 1 introduces the
problem and describes various sources of information. Chapter 2 discusses the available

literature. Chapter 3 briey relates the inverse problem formulation, the mathematics of

the inverse problem, some elements of production data integration. The material covered in
this chapter is generic in nature, and not an original contribution of this research. Chapter 4

relates the algorithm developed for the simultaneous inversion of porosity and permeability.

Some illustrative examples as well as sensitivity issues are discussed. Chapter 5 describes
the inversion of a reservoir with unique features. Discussion on some inuential parameters

on inversion is also given. Chapter 6 discusses the implementation of the data integration
algorithm with variogram updating. Variogram uncertainty analysis with this piece of code

is discussed here. Chapter 7 relates the inversion algorithm for fault properties. Finally,

Chapter 8 gives an overall discussion on the scope of this research. Future recommendations
are also laid out in this chapter. There are also three appendices. Appendix A briey

describes the parameter �les for codes implemented. Appendix B is an independent study
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on the information that can be obtained from sensitivity coeÆcients. Appendix C describes

the mathematics of incorporating pressure derivative mismatch in the inversion algorithm.
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Chapter 2

Literature Review

Production data integration is an inverse problem, that is, a parameter estimation problem.
The dynamic production data contain important information about petrophysical properties

such as permeability, porosity. Any reliable reservoir characterization study should account

for these dynamic data. The objective here is to generate reservoir models that reproduce
these dynamic together with static data and measures of spatial continuity.

The classi�cation of the techniques presented in this review is subjective. The chronology
of the methods, their distinctness and salient aspects were the criteria for the classi�cation.

The methods overlap, which would be true of any classi�cation scheme. A common aspect

of almost all the approaches is the formulation of a mis�t or mismatch function and the
application of a minimization algorithm. Furthermore, in many formulations, the problem

is ill-posed. The solution space (model space) is not unique. There are many solutions, an

in�nite number for most inverse problems of interest, within the solution space. A natural
consequence in many of these techniques is an e�ort to make the problem well-posed, or in

mathematical parlance, regularized.

A thorough review of the subject of parameter identi�cation in reservoir simulations is

also given by, for instance, Jacquard and Jain [108], Gavalas et al. [78], Watson et al. [200],

Feitosa et al. [75, 76], or Oliver [149]; and by Yeh [216] and Carrera and Neuman [27] in
groundwater hydrology.

2.1 Classical Inversion Techniques

Early approaches to the integration of pressure transient data used inverse techniques for

parameter identi�cation or history matching. The most elementary approach to tackle this
kind of problem is the trial and error method. Because of its simplicity in formulation,

trial and error methods are still widely used for history matching. Such methods require

signi�cant professional and computation time.

Automatic history matching addresses this inverse problem. The objective of history

matching is to estimate reservoir petrophysical parameters from pressure and/ or ow rate
data [45, 72, 84, 109, 157, 186]. Most methods are based on the premise that the best

spatial distribution of reservoir parameters minimizes the di�erence between observed and

calculated pressure data at well locations. These techniques seek direct spatial distributions
of reservoir parameters that honor the pressure measurements through pressure response

simulation.
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Most automatic history matching techniques are based on gradient method or streamline

based methods [71]. One of the important aspects of gradient based history matching tech-

niques is computation of the gradients or sensitivity coeÆcients. Schemes like perturbation
methods, rigorous �nite di�erencing of the physical ow equations [5, 18, 19], convolution

integral method [30, 108], optimal control theory [33, 34, 199, 200], have been utilized. The

method of Anterion et al. [5] is now commonly referred to as the gradient simulator method.
Up to 1972, most of the work done was based on perturbation methods. In perturbation-

based methods, the gradients are calculated by �rst making an initial simulator base run
and then repeating the simulator run after perturbing each parameter to be estimated. In

the �nite di�erence based approaches, the sensitivity coeÆcients are derived by setting up

new equations from the original partial di�erential equations describing the physical ow
system; the new set of equations are then �nite di�erenced. A close alternative approach

to this is to derive the gradients directly from the �nite-di�erence form of the physical ow

equations. The convolution integral method is applicable only for linear problems, in which
case, it is actually equivalent to the adjoint (optimal control) method. Optimal control the-

ory based methods use the system of equations as equality constraints for the minimization

problem of the mis�t function with the unknown parameters serving as control variables.

2.2 Regularization Based Techniques

The inverse problem is often ill-posed partly due to the lack of continuous dependence, that

is, small variation in data may result in unbounded changes in the model estimates, and

also to the non-uniqueness of the solution space, which means more than one estimate can
satisfy the same set of observed data [181, 214, 216]. To tackle the stability and eÆciency

problem, a versatile technique was devised by Tsien and Chen [194]. Since its inception in

1974, the technique has been subsequently modi�ed and improved further by Chen and his
colleagues [37, 38, 39, 89, 132, 133]. Essentially the Generalized Pulse-Spectrum Technique

(GPST) is a combination of a Newton-like iterative algorithm and the Tikhonov regular-
ization method. The capability of GPST has been demonstrated in performing history

matching for one-dimensional single-phase reservoir simulators in [36], for two-dimensional

single-phase simulators in [131] and for two-dimensional two-phase models in [187]. Hi-
erarchical multigrid approach, in which the estimation is performed on successively �ner

grids until convergence is reached, is applied to improve the eÆciency of GPST further

[35, 40]. Landa et al. [123] used a similar technique to integrate well test, production,
shut-in pressure, log, core, and geological data.

Another promising numerical method based on regularization techniques proposed by
Kravaris and Seinfeld [117, 118, 119] appears particularly suitable for two-dimensional

single-phase simulator models [126] and for two-phase models [127]. These methods ap-

ply Tikhonov regularization method �rst and then the well-posed problem is solved by the
partial conjugate gradient method of Nazareth [143]. Cubic spline function is used in these

methods to approximate the unknown parameters. Makhlouf et al. [135] extended this nu-

merical algorithm to estimate absolute permeability in multiphase, multi-layered petroleum
reservoirs based on noisy observed data, such as pressure, water cut, gas-oil ratio and rates

of liquid and gas production from individual layers.

Both these groups of techniques do not require any a priori information on the param-

eters to be estimated.
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2.3 Bayesian Estimation

A Bayesian estimation framework was proposed by Gavalas et al. in 1976 [78] for reservoir
modeling using dynamic production data. The underlying theory behind this technique

is to reduce the statistical uncertainty by using additional prior information, for instance

autocorrelation and mean values of permeability and porosity. Shah et al. [181] showed
that if reliable prior information about permeability or porosity is available, Bayesian esti-

mation will improve the variance of the estimation error. Similar Bayesian approach was
used much later by the workers at the Norwegian University of Science and Technology to

integrate historical production data [95, 193]. The problem of integrating production data

is formulated in a lower dimensional parameter space where, for the sake of mathematical
tractability, the parameters are often assumed multivariate Gaussian.

Neuman and Yakowitz [145] used an extended Bayesian approach to estimate actual

values of transmissivity in two dimensional study and covariance functions. Clifton and
Neuman [44] demonstrated the importance of jointly inverting permeability and pressure

data through conditional simulation. They found that the conditioning e�ect of the pressure

data in a full inversion is much greater than that of kriging.

Cooley proposed a method to incorporate prior information having unknown reliability

into the nonlinear regression model by adding a penalty function [46]. The resulting com-

posite objective function consists of two terms: the weighted sum of squared errors in the
pressure and the sum of weighted errors in the parameters. Dagan [49] used an a priori

selected analytical technique and Gaussian conditional mean for the inverse problem.

Maximum likelihood methods [26, 27, 28, 29, 74] have long been used for parameter es-
timation with dynamic data. This is a general non-linear technique that estimates reservoir

parameters using prior estimates along with transient or steady state pressure data. Early

development of this method is presented in Carrera and Neuman [27, 28] and Feinerman
et al. [74]. Parameter estimation is performed using the maximum likelihood theory, in-

corporating the prior information into the likelihood function. The nonlinear ow equation
is solved by a numerical method. Both steady-state and transient pressure data can be

integrated into the model; however, this method is computationally intensive.

Oliver [149] used Gauss-Newton method to obtain the maximum a posteriori estimate
(mean and covariance) that minimizes the objective function derived directly from the a

posteriori probability density function. Multi-well pressure data and prior information are

honored in this technique, however, at each iteration of Gauss-Newton method, the for-
ward problem is solved using a reservoir simulator. Chu et al. [42] presented an eÆcient

method of computing sensitivity coeÆcients required in the approach. This method yields

a smoothed version of the true distribution. Conditional realizations with given variabil-
ity are constructed using Cholesky decomposition of the covariance matrix estimated by

assuming that permeability distribution is Gaussian and pressure data is a linear function

of permeability. Reparameterization based on spectral decomposition reduces the number
of the parameters to be estimated by the Gauss-Newton procedure [149]. More recently, a

reparameterization technique based on subspace method was presented to further improve
the computational eÆciency in the Gauss-Newton procedure by Reynolds et al. [170]. He et

al. [93] extended this method for a three dimensional reservoir model. In another e�ort, the

same authors [92] developed a multistep procedure to generate reservoir models conditioned
to well test data. The ensemble realizations by this method provides a good empirical ap-

proximation to the posteriori probability density function for the reservoir model, which
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can be used for Monte Carlo inference. Oliver et al. [152] presented a procedure to ap-

proximately sample the pdf of a model conditional to production data. They pointed out

that it is important to generate a suite of realizations which reect a proper sampling in
order to characterize uncertainty in reservoir description and reservoir performance predic-

tions. Abacioglu et al. [1] applied a similar technique to a �eld example in estimation of

heterogeneous anisotropic permeability �elds from multiwell interference.
He and Chambers [91] implemented a method based on Bayesian estimation technique

with restricted-step Gauss-Newton method and an extension of Carter's method for sensi-
tivity coeÆcients. The approach updates permeability, porosity and skin factor based on

individual simulation cells, geological features, or on constant multipliers applied in well-test

radius of investigation.
Wu et al. [208, 209] developed a discrete adjoint method for generating sensitivity co-

eÆcients related to two-phase ow production data. The method directly generates the

sensitivity of the calculated data to the model parameters. Using these sensitivity coeÆ-
cients, an eÆcient Gauss-Newton algorithm is applied to generate maximum a posteriori

estimates and realizations of the rock property �elds. Wu [206] presented another new it-

erative algorithm for building reservoir models conditioned to multiphase production data
and geostatistical data. This approach avoids computation of sensitivities relying on solving

the inversion equations through functional extremum.

Oliver et al. [151] presented Markov Chain Monte-Carlo methods to condition a perme-
ability �eld to pressure data. Cunha et al. [47, 48] used a hybrid Markov Chain Monte-Carlo

algorithm to generate realizations of permeability conditioned to prior mean, variance and

multiwell pressure data. These realizations represent samples from the correct a posteriori
probability distribution.

Srinivasan and Caers [182] implemented a Markov Chain Monte-Carlo algorithm to
integrate permeability connectivity information caontained in the ow response data. Prior

to integrating the response data, a neural-network based procedure is used on these data

to �lter out the connectivity information.
Rogerro [171] used a Bayesian inversion technique and an eÆcient optimization algo-

rithm to integrate multiple well historical data and prior geostatistical information. The

procedure permits direct selection of constrained realization.

2.4 Zonation Methods

All numerical reservoir characterization models, irrespective of static or dynamic nature,

should fall into this category inasmuch as the original problem is in�nite-dimensional but

is modeled by a �nite number of parameters. Notwithstanding this fact, the subsequent
methods have been grouped in this category because of emphasis of the zonation approach.

Some of the early methods [27, 44, 71, 108, 145] have already been grouped as the
classical techniques for a historical perspective. While the zonation method is e�ective in

reducing the number of unknowns, suÆcient a priori information is not usually available to

enable speci�cation of the zones on any physical basis. Zonation methods are active research
area. Amongst the newer methods are pilot point method, sequential self-calibrated method,

and others.

Pilot point method [55, 125, 168] is a zonation method that starts by simulating a con-
ditional transmissivity �eld. The generated �eld is then modi�ed by adding additional or

�ctional transmissivity data at some selected locations, termed pilot points, to improve
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the calibration of the pressure data. Adjoint sensitivity analysis is used to determine the

locations where additional transmissivity data should be included [124]. The additional

transmissivity data at the pilot points are treated as local data, a new conditional realiza-
tion of transmissivity is then generated, and, the ow model is run again. The iteration of

adding pilot points is continued until least-squared error criterion is met or the addition of

more pilot points does not improve the calibration. This method is, however, computation-
ally expensive and cannot eÆciently handle pressure data from multiple hydraulic tests at

di�erent times. Fasanino et al. [73] applied this model in inverse modeling of a gas reservoir.
Bissell et al. [17] evaluated pilot point method to an alternative gradzone method, where

groups of grid cells in the model are modi�ed.

Sequential self-calibrated method [25, 81] combines geostatistical and optimization tech-
niques. A geostatistical technique is used to generate a reservoir parameter model condi-

tioned to local measurements of parameters. The initial model is modi�ed to minimize the

mis�t function through an optimization procedure. In order to reduce the parameter dimen-
sion, the optimization is parameterized as a function of the perturbations of permeability

at a few selected locations, called master points. The perturbation values at the master

locations are determined from the optimization procedure by minimizing the squared di�er-
ence of the simulated and observed pressures. The resulting perturbations are propagated

throughout the entire reservoir domain by kriging to obtain the perturbation �eld that is
subsequently added to the initial �eld. The ow equation is linearized to obtain fast solu-

tion in the optimization process. An iterative process is used in order to avoid the errors

in the linear approximation of the ow equation, that is, the modi�ed reservoir model is
input again into the reservoir simulator and new perturbation values calculated until the

actual solution of pressure from the numerical reservoir simulator is close to the observed

data. This approach accounts for measurement errors in the data and the uncertainty in
ow boundary conditions. It is computationally eÆcient. Promising results were obtained

by using this approach in groundwater hydrology [201, 203, 204, 219].

Blanc et al. [20] presented a solution to the problem of constraining geostatistical models
by well test pressure data similar to the pilot point method or sequential self-calibrated

method. In this method, a well test simulator is coupled with a nonlinear constrained

optimization program for an inversion loop so that a set of optimal facies or rock-type
properties and well-skin that give best �t between the simulated and measured pressure

data are obtained. Sensitivity coeÆcients are computed numerically, and in each iteration,
full numerical solution of well test pressures are computed by a well test simulator. The

method is thus computationally ineÆcient.

Xue and Datta-Gupta [211] developed a two stage approach similar to pilot-point tech-
nique but incorporated the prior information in a di�erent way. The covariance matrix is

embedded in the parameterization of the permeability �eld.

2.5 Cokriging Based Methods

Kitanidis and his colleagues [99, 116] applied cokriging to simulate transmissivity and
pressure �elds using covariance or cross-covariance models based on �eld measurements

of transmissivity and pressure. The cross-covariance between transmissivity and pressure

is developed through linearization of the single phase steady state ow equation. Param-
eters in the covariance and cross-variance are estimated from the measured data and the

linearized ow equation using a maximum likelihood method. Realizations are then con-
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structed using Cholesky decomposition of the covariance matrix. Cholesky decomposition is

computationally eÆcient only for small problems. However, the steady-state pressure data

are reproduced only under the assumptions that the relationship between transmissivity and
pressure is linear which is valid only for small variance of transmissivity, the permeability

distribution is Gaussian, and ow is uniform.

In linearized semi-analytical cokriging method [175, 176], a linearized form of the sin-

gle phase steady-state ow equation is used to develop analytical expressions of cross-
covariances of permeability and pressure assuming uniform ow and in�nite domain. Tran-

sient pressure is accounted for with the linearity assumption between change of pressure

and time.

Harvey and Gorelick [88] presented a cokriging method, combining numerical simulation

of ow and tracer transport with a linear estimation, to construct permeability �eld that
sequentially accounts for permeability, pressure and tracer arrival times. Integrating tracer

arrival time data improves the accuracy of the permeability estimation. Tracer arrival time

quantiles are found to be robust indicators of ow paths and ow barriers.

Yeh et al. [215] applied a similar but iterative technique to account for the nonlinear

relationship between permeability and pressure in the estimation through successive lin-
ear approximation. It �rst estimates a permeability �eld by cokriging from the available

permeability and steady-state pressure data. The ow equation is then solved numerically
to obtain a pressure �eld, which is computationally intensive. The covariance and cross-

covariance of permeability and pressure are then updated and a new permeability �eld can

be obtained by again cokriging using the updated covariance and cross-covariance. This
process is continued until the variance of estimated permeability stabilizes.

In another cokriging based method, fast Fourier transform method [85, 86] is applied
to the linearized steady-state ow equation. Transmissivity and pressure perturbations are

represented in the spectral domain as Fourier integrals in two dimension. The covariance

and cross-covariance are represented as functions of the spectral and cross-spectral density.
Transmissivity realizations conditioned to the pressure data are constructed by adding the

di�erence between the unconditional simulation and kriged values of the unconditional
simulation to the kriged values using the �eld data [56, 113]. This method is computationally

fast when there are a large number of pressure data.

Huang et al. [106, 107] integrated time-lapse seismic and production data in reservoir

characterization. The uncertainty was quanti�ed by the statistics on reservoir-scale 3D

acoustic impedance blocks. Using collocated cokriging the impedances were transformed
into reservoir parameter through a petrophysical relationship while respecting the well in-

formation. The results are �nally transferred from the time domain to a spatial one for ow

simulation.

Hu et al. [102] proposed a new kriging algorithm to estimate lithofacies proportions in

well test areas of investigation. Method consists in kriging jointly the proportions of all
lithofacies in the area through a weighted power averaging of lithofacies permeabilities. For

multiple well tests, an iterative process is used to account for their interaction.

Srinivasan and Journel [183] interpreted well test derived e�ective permeability as linear

average of small scale permeability values indexed with a power. A kriging on the power
transformed permeability �elds followed by an inverse power transform allows generating

estimated permeability �elds over the drainage area.
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2.6 Simulated Annealing Based Techniques

Deutsch [59, 60, 64] was among the �rst to present an approach, based on simulated anneal-

ing, that integrates well test-derived e�ective permeabilities in stochastic reservoir models.

Some practical considerations are discussed by him and his colleagues [61, 62]. Ouenes and
his colleagues [155, 156, 184] employed simulating annealing for automatic history matching.

Petrophysical and reservoir engineering parameters are estimated through an automatic and

multiwell history matching using simulated annealing method. A least-square error objec-
tive function de�ned by the oil, gas, and water productions at each well is minimized by

the simulated annealing method. At each iteration in the simulated annealing method, a

limited number of reservoir parameters are adjusted. The impact of these new parame-
ters on the objective function is evaluated by forward reservoir simulation, which is too

costly for routine application for large number of parameters and iteration steps used in
this approach.

In another simulated annealing approach proposed by Tauzin [189], the objective func-

tion is evaluated analytically which improves the computational time. An analytical in-
uence function is de�ned to approximate the perturbation on the pressure transient due

to a local heterogeneity. This inuence function is derived from the analytical solution of
transient pressure in an in�nite homogeneous reservoir containing a single circular discon-

tinuity from Rosa and Horne [174]. This approximation is usually suÆciently accurate to

predict the direction and the order of magnitude of the pressure perturbation caused by the
permeability perturbation.

Tracer data reveal important information on the interwell connectivity. Datta-Gupta et
al. [53, 54] sequentially applied the simulated annealing method to account for both pres-

sure and tracer data in the construction of reservoir permeability model. A semi-analytical

transient time algorithm was used for fast calculation of tracer travel time in the simulated
annealing [51]. Vasco et al. [196] attempted to integrate multiphase production history

data using 3D multiphase semi-analytical streamline model based on simulated annealing

technique. Kulkarni and Datta-Gupta [120] employed a streamline based approach to es-
timate relative permeability information from production data. Application of streamline

based production data integrating approaches can be found in the literature [121, 195, 198].

Yoon et al. [217] developed a streamlined-based multiscale approach to data integration
accounting for varying resolution of di�erent data types.

Maroongroge et al. [137] investigated the e�ectiveness of vertical tracer pro�ling for
determining reservoir zonation. Tracer history is used to condition the permeability model

using a simulating annealing method and a least square history matching method. Condi-

tioning to tracer history substantially constrains the model and it is particularly important
when the horizontal variogram is unknown. The use of vertical tracer pro�ling can substan-

tially improve the results compared to the case when the integrated breakthrough curve is
used. However, this would be quite diÆcult and costly to implement in the �eld.

2.7 Two-Step Approaches and Indirect Methods

Production data can be used to estimate statistical parameters, such as the mean, covari-

ance, or the fractal dimension that describe the spatial distribution of reservoir properties.

These parameters are subsequently used to characterize the reservoir.

These indirect techniques seek to construct geological models that honor critical features
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interpreted from the production data. Some relationship is �rst established between the

production data and some reservoir parameters or their spatial variation. This relationship

then serves as a constraint in the construction of the geological model so that the production
data are indirectly integrated into the reservoir model. The �rst step is to analyze transient

production data and infer spatial heterogeneity features of the underlying reservoir model.

These heterogeneity features may be in the forms of general information on the degree of
heterogeneity, anisotropy and zonation of the reservoir properties; the presence of inter-

nal or external reservoir boundaries such as faults, lithofacies changes, water-oil contacts,
stratigraphic pinchouts; the presence of high ow channels or low permeable zones in an

area and the distance to these zones; in multiple well systems, water breakthrough time and

recovery eÆciencies inform connectivity between wells; e�ective transmissivity and facies
proportions in the well bore vicinity, etc.

Chang et al. [32] give an example of the connection between di�erent engineering data

including well test data, production data, production performance data, hydrogeochemical
data and the geological model. Lord and Collins [134] implemented an approach to detect

compartmentalization in gas reservoirs using production data. Vashist et al. [197] and Bard

et al [9] implemented integrated approaches for carbonate reservoir charcterization. Ban-
diziol and Massonnat [8] integrated pressure transient test and geological data for horizontal

permeability anisotropy characterization. Head et al. [94] used multiple probe pressure data

for reservoir anisotropy determination. Other references on integrated approaches include
[24, 90, 128].

Yadavalli et al [212, 213] used pressure transient data from single or multiple sets of well

tests to estimate permeability variograms, and they were able to obtain reliable horizontal
variogram models in cases where no information is available on the short scale structure of

the variogram. Chang and Yortsos [31] and Beier [12, 158] showed that pressure transient
�eld data could indicate fractal reservoir structure and the parameters of the fractal model.

Grindrod and Impey [82, 83] also estimated fractal geometry parameters from permeability

and pressure data using a maximum likelihood method.

Once the statistical parameters are estimated, they are used in geostatistical techniques

to construct reservoir models. The contribution of production data lies in the improvement

in the estimation of statistical parameters describing the reservoir heterogeneity. In some
cases, such as when the reservoir parameters are Gaussian, and the relationship between

the reservoir parameter and pressure data are linear, the constructed geostatistical reservoir

model may also directly honor the pressure data.

E�ective permeability within the drainage area of the well obtained from well test data

[101, 177] does not resolve local details of the spatial distribution of permeability. However,

welltest-derived e�ective permeability can be regarded as the average value of the heteroge-
neous permeability values in the vicinity of the test well [2, 146]. Deutsch [59, 64, 65, 66, 67]

presented an approach, based on simulated annealing, that integrates well test-derived ef-

fective permeabilities in stochastic reservoir models. The volume and type of averaging
formed by the well test are �rst calibrated by forward simulating the well test on a number

of stochastic reservoir models that are consistent with the geological interpretation, core,
well log, and seismic data. Ranking of the inverted models are considered in some studies

[68]. Scale and precision of seismic data in the reservoir models are considered by Deutsch et

al. [69]. The e�ective permeability from the well-test is assumed to be the power average of
the heterogeneous permeability within the inuence volume of the well test [2]. The optimal

volume and power parameter for the averaging process are obtained from the calibration as
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suggested by Alabert [2]. Stochastic reservoir models are then constructed with simulated

annealing to honor the well-derived average permeabilities. Results showed the improve-

ment in characterizing permeability heterogeneity and waterooding predictions when the
e�ective permeabilities are constrained in the model.

A similar approach was presented by Sagar et al. [178] but using a geometric average

of permeability values within the inuence region. The approach of Deutsch was extended
by Tauzin [189] to directly integrate the pressure transient data using a simple analytical

algorithm based on Rosa and Horne [173, 174] to quickly evaluate the objective function
due to the single perturbation of permeability.

Hird et al. [97, 98] used reservoir connectivity parameters as indirect well-performance

constraints in the conditional simulation of a stochastic reservoir model. Reservoir connec-
tivity parameter was de�ned by a functional relationship between fractional area connected

and permeability percentile cuto�s. This connectivity parameter is found to be strongly

correlated to the well performance, such as secondary recovery eÆciency, drainable hydro-
carbon pore volume, oodable hydrocarbon pore volume and also water breakthrough time.

Based on a strong correlation between the spatial reservoir properties and the reservoir per-

formance, they suggested use of the connectivity parameter to constrain the reservoir model
using simulated annealing. Alabert and Modot [4] also de�ned connectivity of a permeabil-

ity �eld in terms of the connected pore volume.

Holden et al. [100] presented an approach to indirectly account for well test data to
improve the simulation of lithofacies and petrophysics under the framework of two-stage

stochastic simulation as suggested by Haldorsen [50, 87]. Using an analytical tool, the pres-

sure data is used to estimate pressure support and then the shortest distance from the well
to a possible channel boundary, connection between two wells by a high permeable zone and

channel geometry. The channel structure is then simulated using these interpretations with
a marked point process model. Average permeability in the part of the channel intersected

by the well is estimated from the well test data. The permeability �eld was then generated

together with the core/ log data using stochastic Gaussian model. Alabert and Massonnat
[3] used well test data to infer information on channels and lobe dimensions in addition to

average permeability.

Britto and Grader [23] applied transient pressure data to identify local impermeable
regions or high-ow channels. Vashist et al. [197] presented a technique for de�ning reservoir

facies that incorporates the geological features of deposition and diagenesis with the dynamic

ow capacity (kh) of the reservoir. The ranges of permeability for di�erent reservoir facies
are determined through multiple regression analysis based on their dynamic ow capacity

(kh) data in tested wells.

Benkendorfer et al. [13] presented a di�erent approach to indirectly integrate production
data using a two-step approach. That is, the permeability values estimated from well-test

data are regarded as the sum of a core-based permeability and a large-scale permeability due
to fractures and leached zones. The core-based permeability and the large scale permeability

are constructed separately. The �nal model is the sum of the two models. This two-step

approach is applicable when a signi�cant di�erence exists between core-based permeability
and production-scale permeability.

Feitosa et al. [75, 76] presented a new inversion solution, called Inverse Solution Al-

gorithm (ISA) based on Oliver's perturbation solution [146]. The algorithm generates a
smoothed approximation to the true permeability �eld as a function of distance from the

well. Based on the pressure data from draw down and buildup tests, the absolute perme-
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ability is estimated as a function of distance from the well [76, 147], or a function of both

distance and angle from the well.

Huang and Kelkar [105] presented a procedure for integrating three dimensional seismic
data and production data to develop a detailed reservoir description. Impedance distribu-

tion is constructed by the inversion of the seismic data, then porosity �eld, consistent with

the impedance data, is simulated, and �nally permeability �eld, consistent with porosity
and dynamic well test data, is constructed. The initial permeability �eld is then perturbed

randomly until the simulated well test data match the measured data. Forward simulator
is used to calculate the pressure or ow rate response after each perturbation of permeabil-

ity, thus it is computationally ineÆcient. To improve the eÆciency, for a highly correlated

porosity and permeability, the bounds of perturbations can be narrowed. The same authors,
in another paper [104], discussed dynamic data integration in frequency domain. The spatial

relationship-variogram is represented by power spectra and self-correlation in the frequency

domain. Huang et al. [103] also explore the impact of dynamic data integration in the
uncertainty of prediction of the multiphase systems.

Deng [57] and Deng and Horne [58] presented an analytical approach to interpret pres-

sure and tracer data from multiple wells simultaneously to characterize the two dimensional
permeability distribution in heterogeneous reservoir. The correlation between permeability

and dispersivity is sought, and the convection-dispersion equation and di�usion equation to

a system of �rst-order equations in permeability are reformulated. The system of equations
is then solved to yield the permeability distribution for appropriate boundary conditions.

Several other authors have examined the sensitivity of transient pressure response to

the spatial distribution of permeabilities, such as McElwee [139] and Sykes et al. [185]. The
pressure response for a multirate test was found more sensitive to reservoir heterogeneities

than a single ow rate test [173]. The e�ectiveness of the data in estimating local-scale per-
meability can be measured by its spatial resolution [51, 148, 150]. The higher the resolution

of a data to a given parameter, the more information this data carries on the spatial vari-

ation of the parameter. Datta-Gupta et al. [51] used the concept of a resolution matrix to
give information on the spatial averaging involved in the parameter estimation due to lim-

ited sampling, as well as quantitatively evaluate the relative worth of additional data. The

resolution of pressure data in constraining local permeability variations in heterogeneous
media is limited. Oliver [150] showed that interference tests are generally more e�ective

than single-well tests at improving the resolution. On the other hand, interwell tracer data

can be very sensitive to local heterogeneities [52, 58]. Also, both transient pressure data
and tracer data appear to resolve ow barriers better than ow channels [51].

Wu and Datta-Gupta [207] proposed a travel time inversion method for production

data integration based on seismic waveform imaging. The method minimizes a `travel time
shift' at each well derived by maximizing the cross-correlation between the observed and

calculated production response. An optimal control method via a Gauss-Newton method is
employed to compute the sensitivity of the travel time with respect to reservoir parameters.

Rahon et al. [165, 166, 167] developed geological shape inversion technique with im-

proved gradient computation. The devised method is capable of identifying the limits of the
reservoir, position of the faults, thickness and dimensions of channels. Geological shapes

are modeled by triangulation as a 2D or 3D surface. A �nite element structure is associated

to each object and the Cartesian coordinates of the nodes in this triangulation are matched
in the inversion process.

Jensen and Kelkar [111, 112] employed cross-correlation between pairs of production
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wells to determine the inter-well relationships, preferential ow directions and ow barriers.

They incorporated Wavelet transformation tools in reservoir characterization technique in

the form of a better search neighborhood de�nition. In an earlier paper [110] by the same
authors, exploratory data analysis of production data was performed. A local and global

analysis along both the temporal and spatial axis were considered.

Rogerro and Hu [172] used gradual deformation method to continuously modify a geo-
statistical realization while respecting its global mean and variogram. This method was

coupled with an eÆcient optimization algorithm. EÆciency is obtained by selecting the
number of deformation parameters in the model and optimization sequences. Reis et al.

[169] applied gradual deformation technique for history matching to a real oil �eld located

in O�shore Brazil. Lepine et al. [129] demonstrated an uncertainty analysis technique in
predictive reservoir simulation through gradient information.

Landa and Horne [122] devised a procedure to integrate well test data, reservoir perfor-

mance history and 4D seismic information into reservoir characterization. Both cell-based
and object-based modeling were formulated. They used the gradient simulator method to

compute sensitivities. 4D seismic information was considered to be in the form of maps of

change of saturation in the reservoir. The value of data integration was evaluated with the
variance analysis.

Gomez et al. [80] investigated an application of Tunneling Method, a global optimization

technique in history matching of petroleum reservoir. This method could be used as an
alternative to reformulation of the problem if the previously obtained reservoir parameters

are not in the feasible region.

Phan and Horne [159] implemented a method to integrate dynamic data from multi-
ple sources to infer reservoir properties. They emphasized depth-averaged data has poor

resolution, and implemented a method to combine layer by layer seismic information and
production data.

Bi et al. [16] developed a procedure to condition a stochastic channel to well-test pressure

data and well observations of the channel thickness and the depth of the top of the channel.
Zhang et al. [218] implements a procedure to condition a stochastic channel to well-test

pressure, as well as static observations of the channel thickness and depth of the channel

top data.

Wen et al. [205] extended sequential self-calibration method and another inverse tech-

nique named geo-morphing to invert for lithofacies distribution using multiphase production

data. Both of these techniques attempt to modify the �eld of Gaussian deviates while main-
taining �xed truncation threshold through an optimization procedure. Maintaining �xed

threshold �eld, which has been previously computed on the basis of prior information of

lithofacies production data, well data, and other static data, guarantees preservation of the
initial geostatistical structure.

Chu et al. [41] implemented a two-loop iteration method based on inverse solution the-
ory to construct the objection function and the gradient method to generate the maximum

a posteriori estimates. The technique uses a Krylov space-based method to solve the lin-

ear part involved in the minimization thus avoiding explicit construction of the sensitivity
coeÆcient matrix.

Ates and Kelkar [6, 7] also developed a dual-loop procedure for optimizing both relative

permeability and heterogeneity characteristics. The method combines Gauss-Newton and
conjugate gradient algorithms avoiding construction of the sensitivity coeÆcient matrix.

Indirect methods provide exibility to account for production data in the construction
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of reservoir models with less computational e�ort than full inversion. However, the success

of these techniques in constraining reservoir models essentially relies on the quality of the

interpretation of production data to represent reservoir heterogeneities. Some more recent
techniques not presented in the above classi�cation scheme are described below.

2.8 Recent Developments

Mantica et al. [136] devised a hybrid optimization technique combining a gradient based

technique with a chaotic sampling technique to integrate information from production and

seismic data. Their technique is based on a non-linear dynamical system.
Li et al. [130] used adjoint equations for three-dimensional, three-phase ow to cal-

culate dimensionless sensitivity of production data to permeability �elds as well as skin

factors. This allows one to perform history-matching using the Levenbeg-Marquardt or
Gauss-Newton method.

Raghavan et al. [164] integrated geological, geophysical and numerically simulated well
test data of a uvial reservoir. They implemented a `porosity cube' model using seismic

and well-log data. Upscaling of the `porosity cube' was done preserving pay thickness,

pore-volume, and connectivity between high- and low-porosity materials.
Masumoto [138] devised a method for simultaneous matching of pressure and its deriva-

tives for two phase uid ow in heterogeneous reservoirs. An adjoint method was used for

gradient calculation of the objective function having two terms. One term is the pressure
mismatch and the other is the mismatch of pressure change rate.

Queipo et al. [162] proposes a \surrogate modeling" technique to generate porosity and

permeability models. Their approach named NEGO involves numerical reservoir model
based on neural networks, DACE modeling and adaptive sampling. The NEGO algorithm

e�ectively identi�es promising areas for reservoir characterization.
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Chapter 3

Mathematics of Production Data
Integration

Characterization of detailed 3-D reservoir models entails working in a high dimensional
space with a multitude of parameters to be estimated. There are various reservoir model

properties for which inversion techniques, mentioned in the literature review (Chapter 2),

are applied. In most cases, these reservoir parameters are transmissibility, distance to
boundaries, e�ective ow capacities in the vicinity of wells, productivity of wells, mea-

sures of interwell communication (absolute/relative kh), coarse grid representation of kh,

or �, facies connectivity between wells, drainage volumes around wells, facies proportions
around/between wells, connectivity between wells and connected surfaces, local measures of

heterogeneity (e.g., variogram, covariance, mean and variance of permeability and porosity).

Production data integration in reservoir characterization is an inverse problem. The
intent is to build numerical reservoir models that by construction integrate all types of

dynamic data along with all static information about the reservoirs. In order to implement
techniques for production data integration, one needs to understand the diÆculties and

limitations of inverse problems. The characteristics of the inverse problem of production

data integration and the basic framework and elements of most algorithms including the
ones developed in later chapters are presented here. The description in this chapter is generic

in nature and not a speci�c contribution of the present work; however, this mathematical

background is essential to understand the developments in later chapters.

3.1 Inverse Problem

Consider a physical system de�ned by a set of model parameters. Observable performances

of this system are its responses. The direct or forward problem is to predict the responses

once the system and the model parameters are de�ned, inverse problem is to infer the values
of the model parameters from some observed values of its responses. An identi�cation

problem is when the model parameters and the observed values are known but the system

is not identi�ed. Mathematically, one can consider the following problem: �nd � such that

F (d; �) = 0 (3.1)

where both � and d are sets of data or variables on which the solution depends and F is

the functional relation among d and �. Typically, (3.1) is referred to as a direct or forward

18



problem if F and � are given and d is the unknown, inverse problem if F and d are known

and � is the unknown, identi�cation problem when d and � are known while the functional

relation or the mathematical model F is unknown.

The usual approach to the solution of the inverse problem (3.1) entails the following:

1. Construct the mathematical model or the functional relation F .

2. Solve the forward formulation of the problem with a guess of the data set �.

3. De�ne a discrepancy function or objective function between the solution in Step 2 and

observed values.

4. Formulate and implement an optimization algorithm to minimize the objective func-

tion.

In production data integration, these steps are briey explained here.

1. Construction of subsurface ow equation. Depending on the rigor of the study, 2-D

or 3-D formulation of single or multiphase ow equations are modeled through some
discretization technique.

2. Data here are the numerical reservoir models of the petrophysical properties involved.

Properties are permeability, porosity, and in some cases uid saturations. Initial guess

of the these properties is often made from static well data. Direct problem is solved
through some numerical solution technique.

3. Objective function is determined from the mismatch of the simulated ow responses

and the observed production data.

4. Minimization technique is adopted in order to update the numerical model of the

reservoirs.

Solution of an inverse problem is diÆcult in most cases. Deferring the discussion on

speci�c solution techniques or approaches, the next section briey explains the diÆculties
associated with the solution of an inverse problem.

3.2 Ill-posedness of Inverse Problems

In engineering, one often resorts to linearization (or quasilinearization) of a nonlinear prob-
lem. A linearized (or quasilinearized) form of Problem 3.1

F�̂ = D (3.2)

is said to be well-posed when

� for each D 2 Rnobs , there exists a �̂ 2 Rnpar , called a solution, for which (3.2) holds;

� the solution �̂ is unique; and

� the solution is stable with respect to perturbations inD. That means that if F�̂0 = D0

and F�̂ = D, then �̂0 ! �̂ whenever D ! D0.
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A problem that is not well-posed is said to be ill-posed. Inverse problems are inherently

ill-posed.

Essentially, solution of inverse problem means making inference of a physical system
from real data. Issues regarding the solution algorithm of an inverse problems may be:

dimensionality, non-uniqueness, consistency, robustness and so forth.

Characterizing any physical system such as a petroleum reservoir is an in�nite dimen-
sional problem. Properties at an in�nite number of points are to be identi�ed. Solution of

this in�nite dimensional problem is out of the question. The problem is thus rede�ned in a
�nite-dimensional setup.

There are many models in the solution space (model space) that can match the system

performance. Non-uniqueness may arise because of attempting to derive a large number of
essentially continuous parameters from a limited number of responses. Also, identi�ability

of the physics, mechanisms or even procedures may lead to a loss of uniqueness. For

instance, one may often have to correlate some calculated or estimated parameters like
acoustic impedance from seismics with other variables such as porosity, permeability, and

uid saturations a�ecting these measurements. The choice of variables may lead to non-

uniqueness.
Reservoir characterization, like most inverse problems, entails numerous data of di�erent

types and information content. There is often some inconsistency due to di�erent levels of
accuracy within the same data type or di�erent types of data. Also, some data may be in

the time domain while some in the space domain.

Moreover, the scales or volumetric supports of various data may lead to inconsistencies.
For example, well logs have a di�erent volumetric support than well test data or core plug

data. Inconsistency may also arise through application of di�erent methods.

Many of these issues are still to be resolved to a satisfactory level in dynamic data
integration. This is one reason that this �eld is an active area of research. Most methods

attempt to reduce the non-uniqueness. However, it is diÆcult to agree on a suitable measure

of such reduction. Consistency is a diÆcult issue especially in the presence of sparse data and
many degrees of freedom. Due to its in�nite dimensionality, it is not possible to completely

deal with the robustness issue. This motivates the need for exploration of more eÆcient
reservoir characterization techniques with dynamic data.

The next sections describe in some detail the formulation of the forward problem and

possible objective functions in production data integration.

3.3 Forward Problem Formulation

This is basically the core subject of reservoir simulation and reservoir dynamics. To formu-

late the direct problem, one needs to consider the following:

� Conservation laws:

{ Mass conservation law

{ Momentum conservation law

{ Energy conservation law

� Macroscopic law of uid ow through porous media: Darcy's law.

� Constitutive relationships:
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{ Equation of state

{ Relative permeability and capillary pressure relationships.

Combining the above equations, we obtain 2- or 3-dimensional single or multiphase ow

equations in the form of a system of partial di�erential equations. This system of equations

are discretized into a set of non-linear algebraic equations. The discretized equations are
solved with some nonlinear matrix solution techniques. In most cases, these techniques are

iterative methods.

3.4 Objective Function

Objective or discrepancy function is the mismatch between the data obtained by solving the
forward problem using the current estimate of the model and the observed dynamic data.

In the context of production data integration, the objective function, O, can be formulated
as:

O =

nobsX
i=1

wi(d
obs
i � dsimi )2 (3.3)

where nobs is the number of observations (production data), d
obs
i are the observed production

data, dsimi are the simulated ow responses from the solution of the forward ow problem,

while wi are the weights given to individual observed data. Typically, the purpose of

these weights is to make the objective function dimensionless. The matricial expression of
Equation (3.3) is the following:

O = (Dobs �Dsim)TW (Dobs �Dsim) (3.4)

Determination of the weights can be very subjective. Modelers experience and associa-
tion with the data can provide ideas for `adhoc' estimation of the weights. Performances of

sensors used in obtaining the observed data may a�ect the choices of the weights. Regular

calibration of the sensors or probes can provide one the signal-to-noise ratio curves of the
devices. These curves can be used to dissociate noisy components in the data.

Numerical reservoir models are gridded values of the petrophysical properties. In this
research, the properties of interest are absolute permeability and porosity. Consider a

reservoir model size of nx�ny�nz, where nx, ny, and nz are number of grid blocks in x, y,

and z direction. With only two reservoir properties of interest (permeability and porosity),
the number of parameters in the minimization algorithm will be 2�nx�ny�nz. This can
be an enormously large number of parameters. Thus, a smaller set of reservoir properties

may be chosen as the parameters for the minimization algorithm. Let these parameters be
denoted by �j; j = 1; � � � ; npar, where npar is the number of parameters.

The objective function can be formulated in a number of ways. The di�erence in these

formulations stems from various considerations, namely, the minimization algorithms used,
normalization of units, robustifying of the minimization algorithm, and so forth.

In Least Square Formulation, the matrix W in 3.4 is an identity matrix. The major
limitation of this formulation is that it gives rise to numerical problems when the orders of

magnitude of the individual data vary signi�cantly.

In Weighted Least Square Formulation, in order to avoid any problem with orders of
magnitude, the matrix W is a diagonal matrix that assigns individual weights to each

observation. This normalizes individual observation and regularizes the numerical problem

21



to some extent. The concept of assigning some data a higher weight compared to others

based on some engineering heuristics is also possible with this formulation. The rationale

of weighting can also be founded on the premise of degree of uncertainty or con�dence of
the individual data. Thus, Weighted Least Square Formulation gives a space of freedom or

exibility in the inversion algorithm.

Generalized Least Square Formulation is based on probabilistic theory, and includes
the dispersion characteristics or covariance of the data in the objective formulation [140,

188]. Regularization of the minimization problem can be actuated by incorporating prior
information about the parameter involved. The objective function is expressed as:

OGLS =
1

2
(Dobs �Dsim)TC�1D (Dobs �Dsim)+

1

2
(�� �prior)TC�1� (� � �prior) (3.5)

where CD is the covariance matrix of the observation. The main idea behind CD is that
this matrix relates the correlation among the observations. In a simpli�ed case, it may be

assumed that the observations are independent of each other, and thus the covariance matrix
reduces to a diagonal matrix. The diagonal elements are the variance of the observations

(�2D). C� is the covariance matrix of the parameters of the inversion problem. �prior are

the set of parameters obtained before the application of the inversion algorithm. It may
be the set of parameters obtained from the previous inversion step. The covariance matrix

C� may be obtained from geostatistical information. This formulation introduces both a

priori and statistical information about the parameter set �. Application of this approach
in reservoir characterization was �rst studied by Oliver [149].

3.5 Parameter Estimation Algorithms

The minimization algorithm in the context of dynamic data integration is to estimate �̂ = �̂�

such that
�̂� = argmin

�̂
O(D; �̂) (3.6)

where objective function (O) is considered a function of observed data (D) and the reservoir
parameters (�̂) to be inverted. Minimization algorithms in the context of inverse problems

are often referred to as parameter estimation algorithms. Parameter estimation is only

a subproblem of the vast domain of optimization problems. The intent of all parameter
estimation algorithms is to minimize a discrepancy function. There is an extensive literature

and many tools are devised in this area of optimization [14, 15, 77, 160].

We say �̂� is a global minimizer for problem 3.6 if

O(D; �̂�) � O(D; �̂); 8�̂ 2 Rnpar

We say �̂� is a local minimizer for problem 3.6 if

O(D; �̂�) � O(D; �̂); 8� 2 B(�̂�; ��)
where

B(�̂�; ��) , f�̂ 2 Rnpar j k �̂� �̂� k� ��g:
The next section is devoted to optimality conditions for solving minimization problems

of the form 3.6.
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Optimality Conditions

It is impossible to tell whether a vector is a solution of an optimization problem without
checking if it satis�es optimality conditions. Necessary conditions are those that must be

satis�ed by any local minimizer. SuÆcient conditions are those implying that a point is

local minimizer. Optimality conditions can be presented in some forms. The basic form
expresses the fact that the objective function value must increase in the vicinity of a local

minimizer.

Necessary conditions of optimality are those that must be satis�ed by any solution to
(3.6), under assumptions of di�erentiability. Suppose that, O(D; �) in (3.6) is continuously

di�erentiable and �̂ is a local minimizer for (3.6). Then

rO(D; �̂�) = @O(D; �̂�)

@�̂
= 0:

SuÆciency conditions of optimality is presented next. Suppose that O(D; �̂) is twice

continuously di�erentiable. If �̂� 2 R is such that rO(D; �̂�) = 0, and the Hessian of the
objective function at �̂�

H� = �2
��O(D; �̂

�) =
@2O(D; �̂�)

@�̂2

where

Hi;j =
@2O(D;�)

@�i@�j

satis�es the condition

yTH�y > 0 8y 6= 0; y 2 Rnpar :

Then �̂� is a strict local minimizer.

Above equation implies the matrix H� is positive- de�nite. It should be noted that H

is symmetric matrix, i.e.

Hi;j = Hj;i , H = HT

The positive-de�niteness of the Hessian matrix is central to many minimization algo-
rithm. Consider O(D; �̂) to be convex. Applying Taylor's expansion in the neighborhood

of �̂, the function O(D; �̂+ �̂�) is approximated:

O(D; �̂+ �̂�) = O(D; �̂) +rO(D; �̂)T��̂+ 1

2
��̂TH��̂+(�̂�3)

where H is evaluated at �̂. At optimal point (i.e. �̂ ! �̂�), rO(D; �̂) ! rO(D;��) and
H! H�. Following section discusses the basic minimization algorithm that can be used in
the parameter estimation problems.

Basic Minimization Algorithm

Minimization problems as in (3.6) are usually \solved" by iterative methods, which construct

in�nite sequences, f�̂ig1i=0, of progressively better approximations to a \solution", that is,
to a point satisfying an optimality condition. These iterative methods are referred to as

optmization algorithms.
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Literature of optimization algorithms is vast and rich. Taxonomy of optimization tech-

niques can be based on various premises. Problems can be formulated as constrained or

unconstrained.
The unconstrained optimization problem is central to the development of optimization

algorithms. Constrained optimization algorithms are often extensions of unconstrained algo-

rithms. The discussion below starts with unconstrained problems and moves to constrained
problems. Only a few of algorithms that are applicable to reservoir parameter estimation

are mentioned here.

3.6 Gradient Based Methods

Optimality conditions presented previously apply mainly to gradient based methods. Basic

assumptions in most gradient based algorithms are:

� Objective function O(D; �̂) is continuous

� O(D; �̂) is at least twice di�erentiable
The basic concept in the gradient approach is that under the assumption of continuous

di�erentiability and rO(D; �̂) 6= 0 for a given value �̂ = �̂0, it is always possible to reduce

the value of O(D; �) from its current value. This reduction is brought about by introducing

a change in the parameters, i.e.,

O(D; �̂0 + �h) < O(D; �̂0)

where h 2 Rnpar is a descent direction and � > 0 is a scalar step size. Proof of the existence of
a descent direction, h, in the neighborhood of �̂0 can be obtained Using Taylor's Expansion.

O(D; �̂0 + �h) = O(D; �̂0) + �rO(D; �̂0)T +(h2) (3.7)

Examining Equation 3.7, it can be observed that it is always possible to �nd the scalar

� > 0 provided h satis�es the condition

rO(D; �̂0)Th < 0:

The direction h satisfying the above condition is called direction of suÆcient descent. This
guarantees the existence of � and h, provided O(D; �̂0) 6= 0.

Thus, the gradient algorithms entails

� Finding a suÆcient descent direction (h).

� Determining an adequate step size (�).

The practical stopping criterion of these algorithms is

jrO(D; �̂�)j < �:

where � > 0. This implies the necessary condition in a practical sense. The main limitations

of the above criterion is that, in the absence of convexity, the solution may become stuck
in a local minima.

Common gradient based methods include Steepest Descent Method, Armijo Gradient

Method, Newton Method, Gauss-Newton Method, Conjugate Gradient Method, and Quasi-
Newton Method. These are briey described below. Brief discussion of Singular Value

Decomposition Algorithms follows subsequently.
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Steepest Descent Method

An algorithm for solving problem (3.6) is called a descent method if it constructs sequences
f�̂ig1i=0, such that

O(D; �̂i+1) < O(D; �̂i) 8i 2 N (and �̂i 2 Rnpar 8i 2 N):
It is the earliest gradient method invented by Cauchy more than 100 years ago. It corre-

sponds to an algorithm with a suÆcient descent direction hi de�ned by hi = �rO(D; �̂0).
Algorithm for Steepest Descent Method is the following for �̂0 2 Rnpar :

Step 0. Set i = 0.

Step 1. Compute the search direction

hi = �rO(D; �̂i):
Stop if rO(D; �̂i) = 0.

Step 2. Compute the step size

�i 2 �(D; �̂i) , argmin
��0

O(D; �̂i + �hi):

Step 3. Set
�̂i+1 = �̂i + �ihi;

replace i by i+ 1, and go to Step 1.

Problems with this algorithm are that it is quite ineÆcient and it contains a nonimple-
mentable step size rule. Moreover, it has only linear rate of convergence; however, it is the

simplest approach.

Armijo Gradient Method

Armijo gradient method accommodates a step size rule that is implementable. This in-

creases the eÆciency of the descent algorithm. The algorithm follows for �̂0 2 Rnpar and

parameters a; b 2 (0; 1); k� 2 Z:
Step 0. Set i = 0.

Step 1. Compute the search direction

hi = �rO(D; �̂i):
Stop if rO(D; �̂i) = 0.

Step 2. Compute the step size �i = bki , where ki 2 Z is such that

O(D; �̂i + bkihi)�O(D; �̂i) � �bkia k rO(D; �̂i) k2

and

O(D; �̂i + bki�1hi)�O(D; �̂i) > �bki�1a k rO(D; �̂i) k2 :

Step 3. Set

�̂i+1 = �̂i + �ihi;

replace i by i+ 1, and go to Step 1.
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Newton Method

Newton's algorithm is one of the oldest and best methods for solving optimization problems.
In its simplest form it converges only if the initial guess is suÆciently close to a solution.

The idea behind Newton's algorithm consists of decomposing the nonlinear equation

problem (3.6), for which one is unable to obtain an explicit solution, into an in�nite sequence

of linear equations constituting successive approximations, for which one can obtain an
explicit solution. Thus, given the current approximation �̂i 2 Rnpar to a solution of (3.6),

one linearizes (3.6) about �̂i using Taylor expansion and constructs the approximating

problem

O(D; �̂i) +rO(D; �̂i)T (�̂� �̂i) = 0:

whose explicit solution

�̂i+1 = �̂i �rO(D; �̂i)�TO(D; �̂i): (3.8)

is the next, and hopefully better, approximation to a solution of (3.6). This simplest version
of Newton method is sometimes known as Local Newton Method.

The logical extension of Local Newton Method, de�ned by (3.8), to problem (3.6), is

as follows. Given a current estimate �̂i of the local minimizer �̂� we expand O(D; �) to
second-order terms about �̂i

O(D; �̂) � O(D; �̂i) +rO(D; �̂i)T (�̂� �̂i) + 1

2
(�̂� �̂i)TH(D; �̂i)(�̂ � �̂i): (3.9)

Assuming that H(D; �̂i) is positive-de�nite, we can compute the minimizer �̂i+1 of the

right-hand side of (3.9) explicitly, by setting its gradient equal to zero, i.e., by solving the

equation

rO(D; �̂i) +H(D; �̂i)(�̂i+1 � �̂i) = 0: (3.10)

Since, H(D; �̂i) must be non-singular for �̂i close enough to �̂�, (3.10) de�nes the iteration
process

�̂i+1 = �̂i �H(D; �̂i)
�1rO(D; �̂i) i = 0; 1; 2; : : :

There are two problems with this method: �rst, it converges to a solution of (3.6) only
when initialized with a suÆciently good initial guess �̂0; second, it is basically a root-

�nding, not an optimization algorithm, and hence, when applied to a nonconvex function

O(D; �̂), it can converge to a local maximizer instead of a minimizer. This can be shown
by premultiplying Equation (3.10) by (�̂i+1 � �̂i) and transposing the resulting equation,

i.e.,

rO(D; �̂i)T (�̂i+1 � �̂i) = �(�̂i+1 � �̂i)T H(D; �̂i) (�̂i+1 � �̂i): (3.11)

Equation (3.11) does not guarantee a direction of descent unlessH(D; �̂i) is positive-de�nite.

Note that using any positive-de�nite matrix ~H instead of the actual H(D; �̂) it is possi-

ble to have a method that guarantees a descent direction. Another concern with Newton's
method is that it requires not only the �rst derivative of O but also the second derivatives.

This may become computationally expensive.

Gauss-Newton Method

Another variant of Newton method, known as Gauss-Newton method, is widely used in

parameter estimation problem. Consider the least square problem discussed in Section 3.4.
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Let  (�̂) = Dsim(�̂)�Dobs. The idea in this algorithm is to linearize the function around

the current point �̂i
~ (�; �̂i) =  (�̂i) +r (�̂i)T (�� �̂i):

and minimize the norm of the linearized function ~ , i.e.,

�̂i+1 = arg min
�2Rnpar

1

2
k ~ (�; �̂i) k2

= �̂i �
�r (�̂i)r (�̂i)T ��1r (�̂i) (�̂i):

The direction
�r (�̂i)r (�̂i)T ��1r (�̂i) (�̂i) in the Gauss-Newton method is a descent

direction since

r (�̂i) (�̂i) = r
�
(1=2) k  (�) k2�

and

r (�̂i)r (�̂i)T > 0

The derivation of the Gauss-Newton method for the case of weighted least square for-
mulation is developed here. In the case of weighted least square formulation, O is de�ned

(Section 3.4) as

O(D; �̂) = (Dobs �Dsim(�̂))TW (Dobs �Dsim(�̂))

where �̂ 2 Rnpar and Dobs; Dsim(�̂) 2 Rnobs .
The derivative of simulated data with respect to the vector of parameters �̂ is the

sensitivity matrix G given by

G ,
@Dsim

@�̂
=
�
ĝ1; ĝ2; � � � ; ĝi; � � � ; ĝnpar

�

where

ĝi ,
@Dsim

@�̂i
=

2
666664

@dsim1
@�̂i
@dsim2
@�̂i
...

@dsimnobs

@�̂i

3
777775

Sensitivity coeÆcient, si;j, the magnitude of which indicates how much dsimi is a�ected by
a change in �̂j , is de�ned as

si;j =
@dsimi
@�̂j

:

Assuming matrix W to be symmetric with constant coeÆcients and using Equation

(3.8), we have rO(D; �̂) and H(D; �̂):

rO(D; �̂) = �2GTW(Dobs �Dsim)

and

H(D; �̂) = 2GTWG� 2
@GT

@�̂
W(Dobs �Dsim):

The Hessian matrix for the Gauss-Newton method HGN is de�ned as the �rst term of
Equation 3.11, i.e.,

HGN , 2GTWG:
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Imposing positive de�niteness of W, we guarantee that HGN will be at least semi-

positive de�nite. This is not far from the requirement of positive de�niteness. Further

modi�cation of matrix HGN renders stabilization.

This formulation ensures the right descent direction. In the limiting condition, i.e.,

HGN  H that has quadratic rate of convergence. Moreover, in the computation of HGN ,

only the �rst derivatives are required. This makes the algorithm eÆcient.

Lack of positive de�niteness in HGN stems directly from the structure of G. Possible
reasons are:

� Data insuÆciency for parameter resolution.

{ @Dsim

@�̂i
= 0 for some i renders HGN singular.

{ k @Dsim

@�̂i
k � k @Dsim

@�̂j
k 8j 6= i for some i render ill-conitioning of HGN .

� Linear combination of parameters.

Understanding the reasons of lack of positive de�niteness can be very illuminating in the
solution of an inverse problem.

In the case of generalized least square formulation discussed in Section 3.4, the compu-

tation of objective function, gradient and the Hessian is performed in the following manner:

O(D; �̂) =
1

2
(Dobs �Dsim(�̂))TC�1

D (Dobs �Dsim(�̂)) +
1

2
(�̂� �prior)TC�1

� (�̂� �prior)

rO(D; �̂) = �GTC�1
D (Dobs �Dsim) +C�1

� (�̂� �prior)
and

H(D; �̂) = GTC�1
D G� @GT

@�̂
C�1
D (Dobs �Dsim) +C�1

� :

The Gauss-Newton Hessian HGN , in this case, is de�ned as:

HGN � GTC�1
D G+C�1

� : (3.12)

Imposing positive de�niteness of the matrices CD and C� ensures HGN to be positive

de�nite. Moreover, addition of C� introduces further stabilization in the Gauss-Newton

Hessian matrix.

Conjugate Gradient Methods

Hestenes and Stiefel [96] �rst proposed methods of conjugate directions as a technique for

solving large systems of linear equations. There are many variants available di�ering in

line search, restarting, scaling, preconditioning, and so forth. An algorithm for one of the
conjugate gradient variants for �̂0 2 Rnpar :

Step 0. Set i = 0; g0 = rO(D; �̂0), and h0 = �g0.

Step 1. Compute the step size

�i = argmin
��0

O(D; �̂i + �hi):
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Step 2. Update: Set 8>><
>>:

�̂i+1 = �̂i + �ihi;
gi+1 = rO(D; �̂i+1);
i =k gi+1 k2 = k gi k2;
hi+1 = �gi+1 + ihi:

Step 3. Replace i by i+ 1, and go to Step 1.

Conjugate gradient methods aim to improve the convergence rate of steepest descent

method without incurring the computational overhead in Newton's method. The algorithm
is simple and easy to implement when rO(D; �) is already computed. It requires very little
storage; however, numerical error accumulation seriously a�ects the solution.

Quasi-Newton Method

Quasi-Newton Methods for unconstrained optimization approximate the Newton search

direction, usually without evaluating second order derivatives of the objective function.
Variants of this method include secant methods and variable metric methods. Among the

widely used algorithms are Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithms and their variations. The basic BFGS algorithm is discussed
below. For �̂0 2 Rnpar , and H0, a symmetric n� n, positive de�nite matrix,

Step 0. Set i = 0.

Step 1. If gi = rO(D; �̂i) = 0, stop. Else compute

�i = argmin
��0

O(D; �̂i � �H�1
i gi):

Step 2. Compute

�̂i+1 = �̂i � �iH�1
i gi;

gi+1 = rO(D; �̂i+1);

��̂i = �̂i+1 � �̂i; �gi = gi+1 � gi;

Hi+1 = Hi +
1

�gTi ��̂i
�gi�g

T
i �

1

��̂Ti Hi��̂i
(Hi��̂i)(Hi��̂i)

T : (3.13)

Step 3. Replace i by i+ 1, and go to Step 1.

The most popular Quasi-Newton Method is the clever way to compute Hi+1 as one
shown in Equation (3.13).

Singular Value Decomposition Algorithm

Singular Value Decomposition or Spectral Decomposition of a matrix can be used to solve
some parameter estimation problems. This technique is, in fact, used to analyze the exis-

tence of a solution. The idea is that any matrix A 2 Cm�n can be reduced to

A = U�VH (3.14)
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where U 2 Cm�m and V 2 C n�n are two unitary matrices (orthogonal matrices in case of

real-valued), i.e.,

UHU = UUH = Im

VHV = VVH = In

� = diag(�1; : : : ; �p) 2 Cm�n with p = min(m;n)

and �1 � : : : � �p � 0. Here, the superscript H denotes the operation of taking the

conjugate transpose. Formula 3.14 is called Singular Value Decomposition (SVD) of A and
the numbers �i (or �i(A)) are called singular values of A. If A is real-valued matrix, U

and V will be also be real-valued and in above equations superscript T (Transpose) must
be written instead of H (Hermitian).

From (3.14) it follows that (considering real-valued matrices) AT = V�UT so that
U and V being orthogonal, ATA = V�2VT and AAT = U�2UT . As far as the rank

is concerned, if �1 � : : : � �r > �r+1 = : : : = �p = 0, then the rank of A is r. An

interpretation of matrices U and V is that the kernel of A is the span of the column vectors
of V, fvr+1; : : : ; vng and the range of A is the span of the column vectors of U, fu1; : : : ; urg.

Suppose that A 2 R
m�n has rank equal to r and that it admits SVD of the type

UTAV = �. The matrix Ay = V�yUT is called the Moore-Penrose pseudo-inverse or

genearalized inverse matrix of A, where

�y = diag

�
1

� 1
; : : : ;

1

� r
; 0; : : : ; 0

�
:

In nonlinear parameter estimation, Singular Value Decomposition can be used. Previ-

ously, we had from �rst order approximation of Dsim(�̂) around a given �̂0

Dsim(�̂0 +��) = Dsim(�̂0) +
@Dsim

@�̂
��: (3.15)

Now, @Dsim

@�̂ = G and setting

Dsim(�̂0 +��) = Dobs

and we obtain from (3.15)

G�� = Dobs �Dsim(�̂0): (3.16)

Equation 3.16 can be solved using Singular Value Decomposition,

G = U�VT

�� = Gy
�
Dobs �Dsim(�̂0)

�

= V�yUT
�
Dobs �Dsim(�̂0)

�
(3.17)

The algorithm stops when

UT
�
Dobs �Dsim(�̂0)

�
= 0

which implies the necessary condition rO(D; �̂) = 0.

30



3.7 Nongradient Optimization Techniques

Recent advances in information technology and soft computational techniques contribute to
a vast literature in nongradient optimization techniques. Some of the prominent nongradient

methods are namely:

� Evolutionary Computing, e.g. Genetic Algorithms, Memetic Algorithms, etc.

� Simulated Annealing

� Polytope Algorithms

� Response Surface Methods, others.

Brief explanation of these methods follows.

Evolutionary computing [43, 79, 142] exploits an entire population of potential solutions
and evolves them according to some genetically driven phenomena. Genetic algorithms are

among the most representative examples of the principle of evolutionary computing. Genetic

algorithms are capable of dealing with broad class of tasks in spite of their formulation and
the nature of optimization. The genetic algorithm starts with an initial population of N

elements in the search space, determines the suitability of survival of its individuals and

evolves the population to retain the individuals with the highest values of the �tness function
and eliminates the weakest ones. Individual solutions are allowed to recombine and mutate

thus emulating the natural selection or adaptation.

Simulated annealing [63, 115, 141, 155] is a generalization of a Monte Carlo method for

examining the equations of state and frozen states of N -body systems. The concept is based
on the manner in which liquids freeze or metals recrystallize in the process of annealing. The

original Metropolis scheme was that an initial state of a thermodynamic system was chosen
at energy E and temperature T , holding T constant the initial con�guration is perturbed

thus changing the energy @E. If the change in energy is negative the new con�guration is

accepted. If the change in energy is positive it is accepted with a probability given by the
Boltzmann factor expf�(@E=T )g. This processes is then repeated suÆcient times to give

good sampling statistics for the current temperature, and then the temperature is decreased

and the entire process repeated until a frozen state is achieved at T = 0.

Polytope algorithms are also known as Downhill Simplex, Nonlinear Simplex, or sim-
ply Nelder-Mead Simplex methods [144]. Essentially, these methods start from a Polytope

(Simplex), which is a geometrical �gure of N + 1 vertices (in dimension N) and their in-

terconnecting lines. Geometrical operations (reection, expansion, contraction) are then
performed on some candidate vertices in order to move the Polytope in the descent direc-

tions.

3.8 Search Methods

Overall eÆciency of the optimization algorithms hinges on eÆcient ways to compute search
directions and the steps sizes. There are various descent direction search algorithms.

Line-search methods generate the iterates by setting

�̂k+1 = �̂k + �khk
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where hk is a search direction and �k > 0 is chosen so that

O(D; �̂k+1) < O(D; �̂k):

Most line-search versions of the basic Newton method generate the direction hk by modifying
the Hessian matrix �2

��O(D; �̂k) to ensure that the quadratic model of the function has a

unique minimizer. The modi�ed Cholesky decomposition approach adds positive quantities
to the diagonal of �2

��O(D; �̂k) during the Cholesky factorization. As a result, a diagonal

matrix, Ek, with nonnegative diagonal entries is generated such that

�2
��O(D; �̂k) +Ek

is positive de�nite. Given this decomposition, the search direction hk is obtained by solving

�
�2
��O(D; �̂k) +Ek

�
hk = �rO(D; �̂k):

After hk is found, a line-search procedure is used to choose an �k > 0 that approximately

minimizes O along the ray

f�̂k + �hk : � > 0g:
The algorithms for determining �k, in general, rely on quadratic or cubic interpolation

of the univariate function
�(�) = O(D; �̂k + �hk)

in their search for a suitable �k. An elegant and practical criterion for a suitable step size
is to require �k to satisfy the suÆcient decrease condition: O(D; �̂k + �khk) � O(D; �̂k) +
��k�O(D; �̂k)

Thk and the curvature condition: j�O(D; �̂k + �khk)
T j � �j�O(D; �̂k)Thkj,

where � and � are two constants with 0 < � < � < 1. The suÆcient decrease condi-
tion guarantees, in particular, that O(D; �̂k+1) < O(D; �̂k), while the curvature condition

requires that �k be not too far from a minimizer of �.

A trust-region version of Newton's method takes the view that the linear model

O(D; �̂k) +rO(D; �̂k)Th
of O(D; �̂k + h) is valid only when h is not too large, and thus places a restriction on the
size of the step. In a general trust-region method, the Jacobian matrix is replaced by an

approximation, and the step is obtained as an approximate solution of the subproblem

minfk O(D; �̂k) +Bkh k : k Skh k2� �kg;
where Sk is a scaling matrix and �k is the trust-region radius. The step is accepted if the

ratio

�k =
jO(D; �̂k)j � jO(D; �̂k + hk)j
jO(D; �̂k)j � jO(D; �̂k) +Bkhkj

of the actual-to-predicted decrease in k O(D; �̂) k is greater than some constant �0 (typically
.0001). If the step is not accepted, the trust region radius is decreased and the ratio is
recomputed. The trust-region radius may also be updated between iterations according to

how close the ratio �k is to its ideal value of 1.

Given an approximation Bk to the Jacobian matrix, a line-search method obtains a
search direction hk by solving the system of linear equations

Bkhk = �O(D; �̂k):
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The next iterate is then de�ned as �̂k+1 = �̂k + �khk, where the line search parameter

�k > 0 is chosen by the line-search procedure so that

k O(D; �̂k+1) k<k O(D; �̂k) k :

When the \approximate" Jacobian is \exact", as in Newton's method, hk is a downhill

direction in L2-norm, so there is certain to be an �k > 0 such that

k O(D; �̂k+1) k2<k O(D; �̂k) k2 :

This descent property does not necessarily hold for other choices of the approximate

Jacobian, so line-search methods are used only when Bk is either the exact Jacobian or a
close approximation to it.

In an ideal line-search Newton method, we would compute the search direction by solving

rO(D; �̂k)Thk = �O(D; �̂k)

and choose the line-search parameter �k to minimize the scalar function

�(�) = jO(D; �̂k + �hk)j:

However, since it is usually too time-consuming to �nd the � that exactly minimizes �,

we usually settle for an approximate solution �k that satis�es the conditions

�(�k) � �(0) + ��kr�(0); j r�(�k) j� � j r�(0) j;

where � and � are two constants with 0 < � < � < 1. Typical values are � = 0:001, and

� = 0:9.
The �rst of these conditions ensures that k O(D; �̂) k2 decreases by a signi�cant amount,

while the second condition ensures that we move far enough along the search direction by

insisting on a signi�cant reduction in the size of the gradient.
Brief discussion on bound constrained optimization problem and its optimality criteria

follows in the subsequent section.

3.9 Bound Constrained Optimization

Bound-constrained optimization problems play an important role in the development of

techniques for dynamic data integration. Formulation of this type of optimization problem
is

minfO(D; �̂) : L � � � Ug (3.18)

where U and L represent the upper and lower constraint vectors constraining the parameter

space. The importance of this formulation stems from the fact that parameters describing
reservoir properties are not completely arbitrary. These parameters are often believed to lie

in a given range, termed feasibility region. For example, porosity and permeability take only
nonnegative values; high values of permeability are likely to exist in regions of high porosity;

and so forth. This range may come from previous inversion or static data integration in

reservoir characterization.
Algorithms for unconstrained optimization are much simpler and robust than con-

strained optimization. Algorithms for \exact" constrained optimization are complicated
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and often can only be implemented in an ineÆcient manner. One of the basic algorithms

for bound constrained optimization is Gradient-Projection Method.

Algorithms for the solution of bound-constrained problems seek a local minimizer �̂� of

O in the feasible set 
B = [L;U ]. The second order necessary condition can then be de�ned
by the projection of the gradient on the feasible set 
B. This projection can be de�ned

componentwise by

P (rO(D;�))i =
8<
:

minf0; (rO(D;�))ig if �i = li
(rO(D < �))i if li < �i < ui
maxf0; (rO(D;�))ig if �i = ui

(3.19)

where i = 1; : : : ; npar. The �rst-order necessary condition is ful�lled in a local minimizer

�̂� if

P (rO(D;��)) = 0:

If the reduced Hessian (with respect to the free variables)

ITF(��)r2O(D;��)IF(��)

is positive semi-de�nite, then the second order necessary condition holds in ��. Here, the

index set F is the set of the free variables

F(��) = fi 2 f1; : : : ; nparg : li < �i < uig :

The complementary set of F(��) is the active set

A(��) = fi 2 f1; : : : ; nparg : �i = li or �i = uig :

Gradient-Projection Methods

The gradient-projection algorithm is the prototypical method that allows large changes in

the working set at each iteration. Given �̂k, this algorithm searches along the piecewise
linear path

P
B
[�̂k � �rO(D; �̂k)]; � � 0;

where P
B
is the projection onto the feasible set given by Equation 3.19. A new point

�̂k+1 = P
B
[�̂k � �krO(D; �̂k)]

is obtained when a suitable �k > 0 is found. The search for �k has to be done carefully
since the function

�(�) = O (D;P
B
[�̂k � �krO(D; �̂k)])

is only piecewise di�erentiable.

If properly implemented, the gradient-projection method is guaranteed to identify the

active set at a solution in a �nite number of iterations. After it has identi�ed the correct
active set, the gradient-projection algorithm reduces to the steepest-descent algorithm on

the subspace of free variables.
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3.10 Regularization

Section 3.2 discusses the ill-posedness of inverse problems. A more mathematical discourse

of ill-posedness and ways to resolve the problem is given below. If Equation (3.2) is well-
posed, then the matrix F has a well-de�ned, continuous inverse operator F�1. In partic-

ular, F�1(F)(�̂) = �̂ for any �̂ 2 H1, where H1 2 R
npar is the space of parameter; and

Range(F) = H2 2 Rnobs , the space of observable data. If F is a linear operator, then Equa-
tion (3.2) is well-posed if and only if Null(F) = f0g and Range(F) = H2. In other words,

equation (3.2) is ill-posed when F is singular or almost singular.

The idea of regularization is to approximate an ill-posed problem with one that is well-

posed. It allows computation of one solution of the inverse problem, but, in general, there
still is not a unique solution. A regularization operator for F is a one parameter family

of continuous operators R� : H2 ! H1, such that R� is bounded and R�(z) ! Fyz as

� ! 0 8 z 2 D(F), the domain of F. Here Fy is the generalized inverse operator as de�ned
in Section 3.6.

Regularization of the inverse problem can be achieved in number of ways. Tikhonov

regularization is a widely used technique. Tikhonov regularization is given by the following

�̂� = R�(D) = arg min
�2D(F)

�
1

2
k F�̂�D k22 +

�

2
k �̂ k21

�
(3.20)

This method can be thought of as penalized least squares with the second term in (3.20)

being the penalty term.

Apart from the one discussed above, there are numerous other forms of regularization,

namely truncated singular value decomposition, Landweber regularization and so forth.
Modi�ed Cholesky decomposition discussed previously in Section 3.9 also achieves some

form of regularization via stabilization of the Hessian matrix.

Stabilization of the Hessian matrix in the Gauss-Newton algorithm (Section 3.6) is

illustrated next in some detail. From previous discourse, the Gauss-Newton algorithm for
the solution of a linear system is given by

HGN��̂ = �rO(D; �̂): (3.21)

It was indicated earlier in Section 3.6 that HGN is usually ill-conditioned or singular. In
order to determine the descent direction using (3.21), we need to introduce some changes

to HGN such that HGN becomes invertible.

This stabilization is achieved in two stages. A diagonal matrix P is used to scale the

diagonal elements of HGN by the following equation

Pi;i = (HGNi;i
)�

1
2

rendering a modi�ed Gauss-Newton algorithm

(PHGNP)P
�1��̂ = �PrO(D; �̂)

Now the scaled Hessian matrix ~H = PHGNP has unity diagonal elements. Moreover,

absolute values of the o�-diagonal elements become less than unity because of the positive
semide�niteness of the original Hessian matrix. This renders the modi�ed Hessian to be

more stable.
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If the modi�ed Hessian ~H is still ill-conditioned or near singular, a second stage stabi-

lization can be performed by Marquardt method. This stabilization renders

~HGN = PHGNP+ � I (3.22)

where, � is a small positive number. A check for singularity of the modi�ed Hessian ~HGN

is performed by Modi�ed Cholesky decomposition. Ill-conditioning is detected by verifying

whether the descent direction is suÆcient descent direction or not. This means for a positive

number � (0 < � < 1),
rO(D; �̂)T��̂

k rO(D; �̂) k k ��̂ k < ��:

The value of � in (3.22) is reduced in each successive iteration resulting in a downhill step.

However, � is increased whenever the direction appears to be an ascent direction.

Subsequent section describes the inversion technique, Sequential Self-Calibration (SSC)
method, which is in the framework of this research. Streamline-based method is applied

for fast calculation of such sensitivity coeÆcients. The method decomposes the multiple-

dimensional full ow problem into multiple 1D problems along streamlines. The sensitiv-
ity of fractional ow rate at the production well is directly related to the sensitivity of

time-of-ight along each individual streamline and the sensitivity of pressure at cells along
the streamline. The time-of-ight sensitivity of streamline can be obtained analytically

assuming unchanged streamline geometry due to the perturbation of reservoir property.

The sensitivity of pressure is obtained as part of a computationally fast single phase ow
simulation. The complete set of sensitivity coeÆcients are obtained simultaneously with

one single phase ow simulation, and the perturbations at all master locations are jointly

considered. The approach of simultaneous inversion of permeability and porosity builds
upon the SSC technique for simple permeability inversion.

3.11 Sequential Self-Calibration Technique

SSC technique utilizes a weighted least square formulation. It requires a measure of a

mismatch between the inverted model responses and observed data. This measure is termed
as a mismatch or objective function for the optimization subproblem. The objective function

for the minimization problem in SSC method is given by:

O =
X
i

X
t

Wp(i; t)
h
pobsi (t)� pcali (t)

i2
+
X
j

X
t

Wf (j; t)
h
fobsj (t)� f calj (t)

i2
(3.23)

where pobsi (t) and pcali (t) are the observed and simulated pressure at well i at time t. fobsj (t)

and f calj (t) are the observed and simulated fractional ow rate at well i at time t. Wp(i; t)
and Wf (j; t) are weights assigned to pressure and fractional ow rate data at di�erent wells

and at di�erent time. For the present problem of simultaneous porosity and permeability

inversion, the objective function remains same.
In case of simple permeability inversion, for the optimal permeability perturbations at

master locations minimizing the objective function (3.23), sensitivity coeÆcients of pressure

and fractional ow rate at the wells with respect to the permeability perturbations are
required for all master points at all time steps. These sensitivity coeÆcients are:

sk;p;m;t(i) =
@pi(t)

@km
; 8i; t; km
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and

sk;f;m;t(j) =
@fj(t)

@km
; 8j; t; km

with m = 1; : : : ; nm being the index of master points.

In matrix notation, discretization of the ow equation with an implicit scheme leads to
the following equation:

[A]fPgt+1 = [B]fPgt + ffgt (3.24)

where [A] is the transmissibility matrix which accounts for spatial and temporal discretiza-
tion, as well as boundary conditions, [B] = [hc�]= 4 tt+1, and ffgt is the right hand side

matrix that accounts for the load vector (production and injection) and ow boundary con-

ditions. The solution of pressure at time t + 1 is obtained by inverting matrix [A], that
is,

fPgt+1 = [A]�1[B]fPgt + [A]�1ffgt

The sensitivity coeÆcients at time step t + 1 can be calculated right after the pressure at
time t+ 1 is obtained. The perturbation equation of parameter km can be written as:

[A]
@fPgt+1

@km
+
@[A]

@km
fPgt+1 =

@[B]

@km
fPgt + [B]

@fPgt
@km

+
@ffgt
@km

; m = 1; : : : ; nm

where nm is the total number of master points, thus,

[A]
@fPgt+1

@km
=
@[B]

@km
fPgt + [B]

@fPgt
@km

+
@ffgt
@km

� @[A]

@km
fPgt+1; m = 1; : : : ; nm (3.25)

Equation 3.25 has the same form as Equation 3.24 and the matrix [A] is inverted when

solving for the pressure fPgt+1. The sensitivity coeÆcients can be obtained at the same
time step t+ 1 by simple matrix operations, that is,

@fPgt+1

@km
= [A]�1[B]

@fPgt
@km

+ [A]�1
@[B]

@km
fPgt + [A]�1

@ffgt
@km

� [A]�1
@[A]

@km
fPgt+1;

m = 1; : : : ; nm

The elements of matrices, @[A]
@km

, @[B]
@km

, and @ffgt

@km
can be directly computed from the expres-

sions of elements in matrices [A], [B] and ffg with @fpg0

@km
= 0.

The objective function is updated by linearization (i.e., the perturbations of permeability

at master locations, f�Mg = f�k1;�k2; : : : ;�knm ; gT ). Linearization of the objective
function is attained by approximating the pressure data by retaining its �rst order Taylor

expansion, i.e.,

fP calg1t � fP calg0t +
@fPgt
@fMgf�Mg: (3.26)

We de�ne fSgk;t = @fPgt=@fMg = fSk;p;1;t; Sk;p;2;t; : : : ; Sk;p;nm;tg, where Sk;p;m;t = fsk;p;m;t

(j), j = 1; : : : ; nwgT is the sensitivity matrix at time t with respect to the permeability
perturbation at location m computed. fP calg0t and fP calg1t are pressure values at time t

before and after introducing a perturbation matrix f�Mg. Using this linear approximation
and some manipulation, the objective function (3.23) can be rewritten as following:

O(fP calg1) = O(fP calg0) +
ntX
t=1

fDgTt f�Mg+
ntX
t=1

f�MgT [C]tf�Mg (3.27)
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where the matrices fDgt and fCgt are expressed as follows:

fDgt = 2
�
fP calgt � fP obsgt

�T
[W ]tfSgt

fCgt = (fSgt)T [W ]tfSgt
The constraints used for minimizing the objective function (3.27) are simply the possible

minimum and maximum values of perturbations, i.e.,

f�kming � f�Mg � f�kmaxg

where f�kming = minfk0; kkrig � �k�k;krigg and f�kmaxg = maxfk0; kkrig + �k�k;krigg.
fk0g is the vector of permeability values at master points in the initial �eld, fkkrigg and
f�k;krigg are kriging estimations and the corresponding kriging standard deviations at the
master points based on available measured permeability data. If there is no prior k mea-

surements, fkkrigg and f�k;krigg can be selected as the mean and standard deviation of the

desired permeability histogram. �k is a constant value that speci�es the interval size of the
constraints.

This single-phase formulation is extended to multiphase system by incorporating frac-

tional ow rate mismatch term in the objective function (Equation 3.23). The underlying
bases of this inversion method are (1) the analytical 1D solutions of fractional ow along

each streamline [10, 11, 21, 190, 191], (2) the ability to compute sensitivity coeÆcients
of pressure over the entire �eld from single phase ow solutions, and (3) the assumption

that streamline geometry remains unchanged with perturbed permeabilities. The sensitiv-

ity coeÆcients of fractional ow are obtained extremely fast by simple book-keeping of the
streamlines in space. The permeability perturbations are jointly considered rather than

one at a time as in the perturbation method. This method is implemented within the SSC

algorithm for generating geostatistical permeability realizations that simultaneously honor
transient pressure and fractional ow rate data. Streamlines are updated in each outer

iteration of the SSC inversion (see Figure 3.1). The assumption of streamline geometry

remaining unchanged during the perturbation is justi�ed by comparing the SSC inverse
results based on both the perturbation method and the analytical method.

Perturbation Method

A series of measurements of reservoir response dobs(u; t) (pressure or fractional ow rate at

wells) is observed at location u 2 A and time t. A is the entire space. The reservoir data

are nonlinear functions of the parameter vector a (porosity or permeability): d = g(a). In
this case, the function g represents the multiphase ow equations. The inverse problem

consists of �nding the optimal parameter a so that the solution dcal(u; t) = g(a) matches

the observed data dobs(u; t). Thus, the mismatch (dobs�dcal)2 is minimized. For a gradient-
based method (e.g., steepest descent, Gauss-Newton or conjugate gradient method), to �nd

the optimal parameter set a, the sensitivity coeÆcients of d with respect to the parameters
in a are required.

The simplest way of computing such sensitivity coeÆcients is the so- called substitution

or perturbation method. The �rst order approximation of the sensitivity coeÆcient is
computed in this method using a �nite di�erence procedure. The SSC method is adapted

to the perturbation method to �nd the optimal permeability �elds that match the fractional
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Figure 3.1: Flowchart of the Sequential Self-Calibration method.

ow data fj(t). An initial permeability �eld, a0 = k0 = fk0(ui); i = 1; : : : ; Ng, is selected.
N is the number of cells in the model. The ow equations are solved for fractional ow

rate, fj(0), at all wells and at all time steps using the initial permeability �eld.
For all master point locations m = 1; : : : ; nm (� N usually), a small perturbation

4km is introduced individually to the initial permeability at master locations um. The

�eld 4km = f4k(ui); i = 1; : : : ; Ng due to the perturbation 4km = 4k(um), at locations
um is calculated by kriging. This kriged perturbation �eld is then added to the initial

permeability �eld to obtain the perturbed permeability �eld k0 = k0 + 4km. The ow
equations are solved using this perturbed �eld k0 to obtain the new fractional ow rate

solution, f 0j(t) induced by the perturbation at master point um. The sensitivity coeÆcient

of fractional ow rate with respect to the permeability change at master location m can
then be computed as:

sk;f;m;t(j) =
f 0j(t)� fj(0)
4km

Thus, for each outer-iteration of the SSC method (see Figure 3.1), a total of nm + 1 ow
simulation runs are needed to obtain all sensitivity coeÆcients required, which is very com-

putationally intensive. In addition, the values of sk;f;m;t(j), computed with this substitution

method, are sensitive to the perturbation magnitude, 4km, particularly when the function
f is nonlinear. More importantly, the substitution method computes sensitivity coeÆcients

of each parameter independently. Thus, it does not account for joint perturbations at all
nm master locations. The spatial relationship of di�erent master locations is not accounted

for. This is crucial for optimization, which will be elaborated later.

Streamline-Based Analytical Method

The sensitivity coeÆcients are calculated based on the streamline algorithm and the analyt-

ical relationship between fractional ow rate and the time-of-ight of streamline [10, 192].
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Figure 3.2: (a) Analytical 1D solution of tracer ow and its approximation using a Gaussian cumu-
lative function (dashed line), and (b) analytical 1D solution of immiscible two-phase displacement.

The key assumption is that the streamline geometry is insensitive to the relatively small
perturbations of the permeability �eld. This assumption is appropriate if the perturbations

are kept small and all streamlines are updated after each outer loop of the SSC inversion.

The complete set of sensitivity coeÆcients at all master points are obtained simultaneously.
The spatial correlation of perturbation at multiple master locations is accounted for by us-

ing kriging weights computed for all master locations to propagate the perturbations from

the master locations to the entire �eld.

In the streamline-based method, the fractional ow for a given producing well j at time
t is expressed as [10]:

fj(t) =

Pnslj
s=1 q

sl
s f

sl
s (t)Pnslj

s=1 q
sl
s

where qsls is the ow rate associated with streamline s, and f sls (tf ) is the fractional ow
of streamline s at time t. nslj is the total number of streamlines arriving to well wj. The

derivative of fj(t) with respect to the permeability perturbation at master point m is then:

sk;f;m;t(j) =
@fj(t)

@km
=

1Pnslj
s=1 q

sl
s

nsljX
s=1

qsls
@f sls (t)

@km

Depending on the ow regime, the fractional ow rate f sls (t) of streamline s can be

expressed as a function of time-of-ight �s, that is, f
sl
s (t) � ( �st ). Examples of the function

f sls (t) for tracer ow and immiscible two-phase displacement are shown in Figure 3.2. These

functions can either be obtained analytically or numerically [10]. Thus, for @fsls (t)
@km

, it is only

required to compute @�s
@km

.

For simpli�cation, a non-di�usive tracer ow (unit mobility ratio and matched uid
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density) is considered. In such case, the fractional ow rate is (see Figure 3.2a):

f sls (t) =

�
1;
0;

if �s � t
if �s > t

(3.28)

Since Equation (3.28) is not di�erentiable at �s=t = 1, a Gaussian cumulative function

F (�s=t) with small variance is used to approximate the 1D tracer solution (Figure 3.2a):

f sls (t) � 1� F
��s
t

�

hence,
@f sls (t)

@km
= �1

t
G
��s
t

� @�s
@km

where

G
��s
t

�
=

1p
2��

e�
(�s�t)2

2t2�2

is a Gaussian distribution function with mean 1 and variance �2. The variance �2 should be

small so that the approximation is close. The inuence of that variance on the sensitivity

coeÆcients is investigated later.
In the case of two-phase immiscible displacement as shown in Figure 3.2b, the derivatives

of fractional ow with respect to the time-of-ight can be directly computed from Buckley-
Leverett solution.

The time-of-ight of streamline s is a function of total ow velocity itself is a function

of permeability and total pressure along the streamline:

�s =

Z s

0

1

vs
ds:

In a discretized numerical model (see Figure 3.3), the time- of-ight of streamline s from

injector to producer is the sum of the time-of- ight in each cell that streamline s passes

through, that is,

�s =

ns;cX
c=1

4�s;c (3.29)

ns;c being the number of cells crossed by streamline s from injector to producer, and 4�s;c
is the associated time-of-ight for streamline s to pass through cell c.

In Figure 3.3, for example, the total number of cells crossed by the streamline from

injector to producer is 13 (= ns;c). Based on the semi-analytical solution [51, 161], that is,
assuming linear variation of velocity in all directions within a numerical cell, the cell (or

di�erential) time-of-ights are:

� if the streamline exits the cell c in the X-direction,

4�s;c = 4�s;c;x = 1

Jx
ln

�
vx;0 + Jx(xe � x0)
vx;0 + Jx(xi � x0)

�
(3.30)

� if the streamline exits the cell c in the Y -direction,

4�s;c = 4�s;c;y = 1

Jy
ln

�
vy0 + Jy(ye � y0)
vy0 + Jy(yi � y0)

�
(3.31)
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Figure 3.3: Schematic illustration of tracking a streamline through a discretized numerical model.

where

Jx =
vx;4x � vx;0
4x

Jy =
vy;4y � vy;0
4y

vx;0 = �T01 p0 � p14x�� ; T01 =
2k0k1
k0 + k1

vx;4x = �T02 p2 � p04x�� ; T02 =
2k0k2
k0 + k2

vy;0 = �T03 p0 � p34y�� ; T03 =
2k0k3
k0 + k3

(3.32)

vy;4y = �T04 p4 � p04y�� ; T04 =
2k0k4
k0 + k4

where 4x and 4y are the cell size in X and Y directions, � the porosity, T01 to T04 the
transmissibilities for the four interfaces of the cell intersected by the streamline (cell 0 in

Figure 3.3), p0 to p4 and k0to k4 the pressure and permeability values at the current (0)

and the surrounding (1 to 4) cells, respectively (see Figure 3.3). (xi, yi) and (xe, ye) are the
inlet and exit coordinates of the streamline in current cell 0, and (x0, y0) is the coordinate

of the lower-left corner of current cell 0.
From Equations (3.29) to (3.32), the derivatives of time-of- ights with respect to per-

meabilities are derived to be:

@�s
@kj

=

ns;cX
c=1

8<
:

4X
g=1

@ 4 �s;c
@T0g

@T0g
@kj

+

4X
l=0

@ 4 �s;c
@pl

@pl
@kj

9=
;
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@4�s;c
@T0g

and
@4�s;c
@pl

can be computed from Equations (3.30) and (3.31). @pl
@kj

are the sensitivity

coeÆcients of pressure with respect to permeability change. Finally [81]

@T0g
@kj

=
T 2
0g

2

�
�k;j;0
k20

+
�k;j;g
k2g

�

�k;j;0 and �k;j;g are the permeability kriging weights attributed to master point j, cells 0 and
g (g = 1; : : : ; 4). Since the kriging weights are computed accounting for all master points

[114], the resulting sensitivity coeÆcients account for the spatial distribution of all master
points. The permeability perturbations at all master locations are now considered jointly

rather that one at a time. The complete set of sensitivity coeÆcients at all master points

are obtained simultaneously. In addition, there is no need to choose a speci�c value of 4kj
before computing sensitivity coeÆcients.

Derivation of Time-of-Flight and Derivatives

The derivations of the time-of-ights and their derivatives or the sensitivity coeÆcients are
laid out in this section. Essentially, this calculation reduces to a simple book-keeping of the

streamlines in the simulation model. This is both mathematically simple and computation-

ally eÆcient. Extension of this method to other types of ow, such as immiscible two-phase
ow and 3D ow, should be straightforward.

From Equations (3.30) to (3.32), the cell time-of-ights, derived, are:

4�s;c;x = �4 x2�

Ax
ln

�4xT01(p0 � p1) +Ax(xe � x0)
4xT01(p0 � p1) +Ax(xi � x0)

�
(3.33)

4�s;c;y = �4 y2�

Ay
ln

�4yT01(p0 � p3) +Ay(ye � y0)
4yT01(p0 � p3) +Ay(yi � y0)

�
(3.34)

where Ax = T01(p1 � p0) + T02(p2 � p0), and Ay = T03(p3 � p0) + T04(p4 � p0):
The derivatives, required in Equation (3.11) in the x- direction, are stated below (refer

to Figure 3.3). Taking partial derivatives of Equation 3.33 with respect to T01, T02, T03,

T04, p0, p1, p2, p3 and p4, respectively, Equations (3.35) to (3.41) are obtained.

@ 4 �s;c;x
@T01

=
�4 x2�(p0 � p1)

A2
x

�
ln
Dx

Cx
+Ax

[4x� (xe � x0)]Cx � [4x� (xi � x0)]Dx

CxDx

�

(3.35)

@ 4 �s;c;x
@T02

=
�4 x2�(p0 � p2)

A2
x

�
ln
Dx

Cx
+Ax

�(xe � x0)Cx + (xi � x0)Dx

CxDx

�
(3.36)

@ 4 �s;c;x
@T03

=
@ 4 �i;s;x
@T04

= 0 (3.37)

@ 4 �s;c;x
@p0

=
�4 x2�

A2
x

�
�(T01 + T02) ln

�
Dx

Cx

�
+

Ax
[4xT01 � (T01 + T02)(xe � x0)]Cx � [4xT01 � (T01 + T02)(xi � x0)]Dx

CxDx

�
(3.38)
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@ 4 �s;c;x
@p1

=
�4 x2�

A2
x

�
T01 ln

�
Dx

Cx

�
+

Ax
[�4 xT01 + T01(xe � x0)]Cx � [4xT01 + T01(xi � x0)]Dx

CxDx

�
(3.39)

@ 4 �s;c;x
@p2

=
�4 x2�

A2
x

�
T02 ln

�
Dx
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�
+Ax

T02(xe � x0)Cx � T02(xi � x0)Dx

CxDx

�
(3.40)

@ 4 �s;c;x
@p3

=
@ 4 �i;s;x
@p4

= 0 (3.41)

where Cx = 4xT01(p0 � p1) +Ax(xi � x0) and Dx = 4xT01(p0 � p1) +Ax(xe � x0):
Similarly, in the y-direction, taking partial derivatives of Equation 3.34 with respect to

T03, T04, T01, T02, p0, p3, p4, p1 and p2, respectively, Equations (3.42) to (3.48) are obtained.

@ 4 �s;c;y
@T03

=
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�
ln
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[4y � (ye � y0)]Cy � [4y � (yi � y0)]Dy

CyDy

�

(3.42)
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ln
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+Ax

�(ye � y0)Cy + (yi � y0)Dy
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�
(3.43)

@ 4 �s;c;y
@T01

=
@ 4 �s;c;y
@T02

= 0 (3.44)

@ 4 �s;c;y
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=
�4 y2�
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y

�
�(T03 + T04) ln

�
Dy

Cy

�
+

Ay
[4yT03 � (T03 + T04)(ye � y0)]Cy � [4yT03 � (T03 + T04)(yi � y0)]Dy

CyDy

�
(3.45)
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=
�4 y2�
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y

�
T03 ln
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Dy

Cy

�
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[�4 yT03 + T03(ye � y0)]Cy � [4yT03 + T03(yi � y0)]Dy
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(3.46)

@ 4 �s;c;y
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=
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T04 ln

�
Dy

Cy
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T04(ye � y0)Cy � T04(yi � y0)Dy

CyDy
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(3.47)

@ 4 �s;c;y
@p1

=
@ 4 �s;c;y
@p2

= 0 (3.48)

where Cy =4yT03(p0 � p3) +Ay(yi � y0) and Dy = 4yT03(p0 � p3) +Ay(ye � y0):
This elegant account of the streamline derivatives is an essential feature of the streamline-

based analytical technique. For increasingly large grid sizes, this method with simple book-
keeping of streamlines proves to be far more eÆcient than the perturbation methods. The

derivatives here have been derived for 2D grids, which can easily be extended to 3D grids.
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A simpli�cation to the computation of the time-of-ights derivatives can be imple-

mented. One can assume that the contribution of the second term of the derivation shown

in Equation 3.32 is negligible. So the derivatives of time-of-ights with respect to perme-
abilities will now be:

@�s
@kj

=

ns;cX
c=1

8<
:

4X
g=1

@ 4 �s;c
@T0g

@T0g
@kj

9=
;

with the notations having earlier implications. Further simpli�cation, which precludes a few

computational steps, can be implemented if one considers
@4�s;c
@kc

@kc
@kj

instead of
@4�s;c
@T0g

@T0g
@kj

,

where kc is the permeability at cell c. This reduces the necessary derivative equation to:

@�s
@kj

=

ns;cX
c=1

@ 4 �s;c
@kj

=

ns;cX
c=1

@ 4 �s;c
@kc

@kc
@kj

: (3.49)

The partial derivatives in Equation 3.49 can be derived from the basic equations. Combining
Equations 3.11, 3.29 and Darcy's law one can obtain:

4�s;c =
Z sout

sin

1

vs;c
dr =

Z sout

sin

�c�

kcjJ jdr

where �, � and kc are porosity, viscosity and permeability at cell c, and jJ j is the absolute
value of the pressure gradient. Assuming independence of the time-of- ights to the pressure
gradient, the partial derivatives can be approximated to be:

@ 4 �s;c
@kc

= �4�s;c
kc

:

Applying the above to Equation 3.49, the derivative equation will be reduced to:

@�s
@kj

=

ns;cX
c=1

@ 4 �s;c
@kc

@kc
@kj

= �
ns;cX
c=1

4�s;c
kc

�k;j;c

where �k;j;c is the permeability kriging weight of master point j to cell c, which accounts

for the correlation of permeability at the two locations. Studies indicate faster convergence
using this simpli�ed approach with little loss of accuracy.
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Chapter 4

Simultaneous Inversion of �/ln(k)
Using Multiple Well Production
Data

In this chapter, we present an inversion algorithm for simultaneous generation of porosity

and permeability models using available production data and static information. Appli-
cations with synthetic and realistic examples are discussed. A number of implementation

issues and sensitivity studies are also discussed.

4.1 Simultaneous Inversion Problem

It is a common practice to build geostatistical reservoir porosity models by kriging-based

simulation techniques [67] and then generate permeability models by collocated cokriging-

based simulation [210] using porosity values. The inversion algorithm described here is
based on the same underlying geostatistical equations.

The approach uses simple kriging of porosity (�) at all locations, then collocated cok-

riging to estimate y = ln(k). The simple kriging equation for � at location i is:

�i =

nmpX
j=1

��i;j�j (4.1)

where �j ; j = 1; : : : ; nmp are the porosity values at the master points, nmp is the number of

master points, and ��i;j are the kriging weights at a location i for porosity value at master
point �j . While the collocated cokriging equations for yi at location i is given by

yi =

nmpX
j=1

�yi;jyj + �i�i (4.2)

where yj; j = 1; : : : ; nmp are the log permeability values at the master points, �yi;j are the
kriging weights at location i for yj value at any master point, �i is the collocated kriging

weight at location i for the collocated secondary variable �i.

A Markov assumption is then used that entails a linear regression model between y and
�:

y = ��+ r (4.3)
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where � is the global correlation coeÆcient between y and �, and r a random component.

Relationship (4.3) is used as a closure. Combining above relationships, we have:

@yi
@yj

= �yi;j + �i
@�i
@yj

= �yi;j + �i
@�i
@�j

@�j
@yj

= �yi;j + �i�
�
i;j

1

�
(4.4)

This equation describes the change of y at any location i due to the change of y at a given
master point j. The second term is set to zero if � = 0; then the collocated kriging equation

becomes a simple kriging equation.

Based on this, we can build the correlation relationship into the ow equations to get
the sensitivity of pressure on y and �. Details follow.

Discretization of ow equation with an implicit scheme leads to the following equation:

Apn+1 = Bpn + fn (4.5)

A, B, and f have closed form functional relation. It is possible to obtain the derivatives of

A, B, and f with respect to y. Note that A and B are explicit functions of k = exp(y),

and only the diagonal terms of these matrices have terms depending on �; however, since
y is correlated to � (as shown in Equation 4.2), non-diagonal terms of both A and B are

also dependent on �. Thus, we need to consider � as a variable as well.

Elements of A are the sum of transmissibilities. Using geometric averages of permeabil-
ities in the transmissibility calculation, we have the following for any two adjacent grid cells

1 and 2

T1;2 =
p
k1k2 = exp

�
y1 + y2

2

�
(4.6)

where y1 = log(k1) and y2 = log(k2). Consequently, the derivatives are computed as

@T1;2
@yj

=
1

2
T1;2

�
@y1
@yj

+
@y2
@yj

�
(4.7)

The sensitivity coeÆcients in the above equation can be calculated using (4.4).

For terms of A and B having � variable, we need

@�i
@yj

=
@�i
@�j

@�j
@yj

=
��i;j
�

(4.8)

Again, the right hand side of the above equation is set to 0 when � = 0. Using Equations

4.7 and 4.8, we can compute derivatives of A, B, and f with respect to y, and obtain the
sensitivity of pressure on y, that is, @pi=@yj .

The sensitivity of pressure on porosity can be similarly calculated. In order to compute

derivatives of A, B, and f with respect to � at any master point j, we need the sensitivity
coeÆcients of yi with respect to �j . Applying Equation 4.4 and chain rule, we have

@yi
@�j

=
@yi
@yj

@yj
@�j

= �
@yi
@yj

= �

�
�yi;j + �i�

�
i;j

1

�

�
= ��yi;j + �i�

�
i;j (4.9)

Introducing the above relationships into the derivative of Equation 4.5, we get

@pi
@�j

=
@pi
@yj

@yj
@�j

= �
@pi
@yj

(4.10)
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The above relationship indicates that we do not need to solve separately for sensitivity

coeÆcient of porosity. The linear regression relationship can be used to get the sensitivity

coeÆcients of the response variables with respect to � from those with respect to y. Again,
when � = 0, Equation 4.10 can not be used, and we need to use 4.9 to compute the

derivatives in Equation 4.5 to get the sensitivity coeÆcients with respect to porosity. Such

calculation would be simple since there is no permeability term. It is now possible to
perform the optimization to �nd the optimal �yj and ��j; j = 1; : : : ; nmp .

The optimal perturbations must then be propagated to the entire domain using collo-
cated cokriging (Equations 4.1 and 4.2). The algorithm for the simultaneous porosity and

permeability inversion:

1. Select master point locations j = 1; : : : ; nmp.

2. Perform simple kriging of � to get kriging weights ��i;j at location i for �j; j =

1; : : : ; nmp.

3. Perform collocated cokriging withMarkov-type assumption and obtain cokriging weights
�yi;j and �i.

4. Solve pressure equations.

5. Compute derivatives of matrices in Equation 4.5 with respect to yj for all master

points.

6. Compute sensitivity coeÆcients with respect to y.

7. Compute sensitivity coeÆcients with respect to � using Equation 4.9 or 4.10.

8. Perform optimization to compute optimal change of �yj and ��j.

9. Propagate changes to entire domain.

10. Update � and y �elds.

11. Repeat Step (1) to (10) until convergence is achieved.

The algorithm for computing the sensitivity coeÆcients is based on the kriging equa-
tions for porosity and collocated cokriging equation for permeability modeling. We use

the relationship between porosity and permeability in the kriging equations and perme-

ability sensitivity of the pressure equation. This drastically reduces the computation time
compared to separate porosity and permeability sensitivity calculation.

A facility for histogram transformation of the inverted � and ln(k) �elds to some global
distributions is imcorporated in the integration algorithm. This transformation may be

perfomed after Step (10) in the above mentioned workow. In order to honor hard data at
well locations, the constraints are set up using very low variance values. Thus, there is a

exibility of variation within narrow range to account for the error components in the hard

data. The code allows one to input these variances at the hard data location explicitly.
However, at other master points the constraints are given by the kriging variances.

Allocation of master points is performed in a random manner. However, to maintain an
areally unclustered distribution of the locations of the master points, they are allocated in

a 2D random grid selection procedure. The locations of the master points can be changed
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Figure 4.1: Reference � and ln(k) �elds: Deterministic Example.

after a �xed number of outer iterations. This number is provided as a parameter at the
start of the execution. It should be noted that at all well blocks with production data,

master points are assigned automatically.

Subsequent sections discuss the application of the algorithm with some synthetic reser-

voir models. Some implementation issues and sensitivity analyses are also documented.

4.2 Example 1: A Deterministic Example

A synthetic example is used here to evaluate the ability of the algorithm to generate models

of porosity and permeability from multiple well production data. The reference � and ln(k)
models are constructed, and then, the dynamic pressure responses at a number of wells,

caused by changing ow rates, are obtained by ow simulation. The dynamic ow rate and

pressure data and information on the variograms of � and ln(k) are used to invert for both
� and ln(k). Then, the inverted �elds are compared with the reference �eld to evaluate the

capability of the algorithm.

The 2D 4,000-ft square domain will be discretized into 25 � 25 grid cells of 160 � 160
ft. There is a high porosity (0.25) and high permeability (500 mD) band connecting the

lower-left corner and upper-right corner. The porosity and the permeability in other areas

are 0.175 and 10 mD, respectively. Figure 4.1 shows the reference � and ln(k) �elds. There
are four wells: W1 at the center of the cell (5,21), W2 at (21,21),W3 at (5,5), and W4

at (21,5). Wells are shown in Figure 4.1. The four boundaries are no-ow boundaries,

reservoir thickness is 100 ft, viscosity is 0.2 cp, formation compressibility is 10�6 psi�1, and
well radius is 0.3 ft. For global distribution of � and ln(k), we used the reference bimodal

distributions.

Figure 4.2 shows the imposed producing rates and the corresponding pressure responses
at the di�erent wells solved numerically. Di�erent shut-in times for di�erent wells create

well interference so that more information on spatial variations of � and ln(k) is contained

in the production data.

There are many implementation options. Results obtained using various options are
informative. Sensitivity of the inverted models to the selection of various anisotropy, initial

�elds, optimization parameters will be demonstrated later.
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Figure 4.2: Production data (pressure and ow rates) obtained from the reference �eld: Determin-
istic Example.

50



V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.95 8000 - 1100 45

Table 4.1: Prior variogram information used for �: Example 1.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.95 8100 - 1000 45

Table 4.2: Prior variogram information used for ln(k) in Example 1.

For all the runs below, we used constant initial � and ln(k) �elds of � = 0:4 and

ln(k) = 3:15. Anisotropic variograms with very long correlation length (about 8,000 ft) in
the 450 direction for both � and ln(k) were employed. The prior variogram models used in

the following runs (unless stated otherwise) for � and ln(k) are given in Tables 4.1 and 4.2:

Run 1: Inversion with production data, global histogram, prior informa-

tion on variography, and local hard data

Local hard data used are shown in Figure 4.3. The inverted models are obtained after 17
outer iterations (75 seconds in 733 MHz dual processor workstation). The pressure responses

in the updated porosity and permeability �elds converge to the reference pressure data.

These inverted models are shown in Figure 4.4. The connected high porosity/permeability
band connecting W2 and W3 is clearly evident. Figure 4.5 shows the pressure values at

the four wells computed from the true (from reference), initial and �nal updated porosity

and permeability �elds. Pressure responses in the initial �eld deviate signi�cantly from the
true values because of the poor model; however, the updated �elds accurately reproduce

the pressure data from all wells. The objective function values of the inversion process is
shown in Figure 4.6. Final average pressure mismatch (in L2 norm sense) for 200 data

was 4.1 psi, which is remarkably small as evident from the pressure match in Figure 4.5.

Updated porosity and permeability �elds after each outer iteration of the inversion method
are shown in Figures 4.7 and 4.8.

It is interesting to see � and ln(k) models and their pressure responses when only static

information is used. Figure 4.9 shows conditionally simulated porosity and permeability
�elds using local hard data, prior global distribution and information on variography. Thus,

no production data information is captured in these models. The models themselves appear

to have the major features of the reference models. Nevertheless, the pressure responses
(shown in Figure 4.10) computed from these models deviate from those in the reference

�eld signi�cantly.
If the global distribution is not used in static inversion (conditional simulation), the

models and the pressure responses deviate drastically from those of the reference model.

Figure 4.11 shows these conditionally simulated porosity and permeability �elds. Figure
4.12 shows the computed pressure responses of these models. Comparison with the models

inverted using production data (Figure 4.5) gives us an idea of what information can be
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Figure 4.3: Static well data for � and ln(k): Deterministic Example Run 1.
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Figure 4.4: Updated � and ln(k) �elds: Deterministic Example Run 1.
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Figure 4.5: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Deterministic Example Run 1.
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Figure 4.6: Objective function values of the inversion process: Deterministic Example Run 1.
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Figure 4.7: Updated � �elds at each iteration of the inversion process: Deterministic Example Run
1.
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Figure 4.8: Updated ln(k) �elds at each iteration of the inversion process: Deterministic Example
Run 1.
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Figure 4.9: Conditional simulation of � and ln(k) �elds honoring only static information (local
data, global distribution and prior variography).
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Figure 4.10: Pressure responses computed from conditionally simulated (bullets) � and ln(k) �elds
with the true data (solid lines).
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Figure 4.11: Conditional simulation of � and ln(k) �elds honoring only static local data, and prior
variography information.

resolved using production data. Of course, more data leads to the better resolved model.

Conicting data will lead to a poor model and lack of convergence.

Run 2: Inversion with production data, global histogram, prior informa-

tion on variography, but no local hard data

The inverted models are obtained after 5 outer iterations (26 seconds in 733 MHz dual

processor workstation). The pressure responses in the updated porosity and permeability

�elds converge to the reference pressure data. These inverted models are shown in Figure
4.13. The connected high porosity/permeability band connecting W2 and W3 is clearly

evident. Figure 4.14 shows the pressure values at the four wells computed from the true

(from reference), initial and �nal updated porosity and permeability �elds. Note that the
pressure match in this case is even better than the previous case. The objective function

values of the inversion process are shown in Figure 4.15. Final average pressure mismatch

(in L2 norm sense) for 200 data was 1.7 psi (compared to 4.1 psi in Run 1). Near-wellbore
featrues are captured in the inverted models. However, close inspection of the �nal models

tells us that these models do not accurately capture the high porosity/permeability streak
in the boundary regions away from the wells. Perhaps it can be explained by the notion that

static hard data play a greater role through kriged estimation in the regions that cannot

be informed by production data. Updated porosity and permeability �elds after each outer
iteration of the inversion method are shown in Figures 4.16 and 4.17.

Run 3: Inversion with production data, prior information on variography

and local hard data, but no global distribution

Local hard data used are shown in Figure 4.3 (same as in Run 1). The inverted models

are obtained after 7 outer iterations (44 seconds in 733 MHz dual processor workstation).
The pressure responses in the updated porosity and permeability �elds converge to the

reference pressure data. These inverted models are shown in Figure 4.18. The connected

high porosity/permeability band connecting W2 and W3 is clearly evident. Figure 4.19
shows the pressure values at the four wells computed from the true (from reference), initial

and �nal updated porosity and permeability �elds. The objective function values of the
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Figure 4.12: Pressure responses computed from conditionally simulated (bullets) � and ln(k) �elds
with the true data (solid lines).
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Figure 4.13: Updated � and ln(k) �elds: Deterministic Example Run 2.
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Figure 4.14: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Deterministic Example Run 2.
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Figure 4.15: Objective function values of the inversion process: Deterministic Example Run 2.
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Figure 4.16: Updated � �elds at each iteration of the inversion process: Deterministic Example
Run 2.

Reference Field

X (feet)

Y 
(fe

et
)

0 4000
0

4000
Initial Field

X (feet)

Y 
(fe

et
)

0 4000
0

4000
Iteration 1

X (feet)

Y 
(fe

et
)

0 4000
0

4000

Iteration 2

X (feet)

Y 
(fe

et
)

0 4000
0

4000
Iteration 3

X (feet)

Y 
(fe

et
)

0 4000
0

4000
Iteration 4

X (feet)

Y 
(fe

et
)

0 4000
0

4000

Final Updated Field

X (feet)

Y 
(fe

et
)

0 4000
0

4000

2.0

3.0

4.0

5.0

6.0

7.0

Figure 4.17: Updated ln(k) �elds at each iteration of the inversion process: Deterministic Example
Run 2.
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Figure 4.18: Updated � and ln(k) �elds: Deterministic Example Run 3.

inversion process is shown in Figure 4.20. Final average pressure mismatch (in L2 norm

sense) for 200 data was 9.1 psi. Compared to the �rst two runs, this is a relatively high
number. Updated porosity and permeability �elds after each outer iteration of the inversion

method are shown in Figures 4.21 and 4.22.

Run 4: Inversion with production data and prior information on variogra-

phy, but no local hard data or global distribution

The inverted models are obtained after 10 outer iterations (47 seconds in 733 MHz dual

processor workstation). The pressure responses in the updated porosity and permeability

�elds converge to the reference pressure data. These inverted models are shown in Figure
4.23. The connected high porosity/permeability band connecting W2 and W3 is clearly

evident. Figure 4.24 shows the pressure values at the four wells computed from the true

(from reference), initial and �nal updated porosity and permeability �elds. The objective
function values of the inversion process is shown in Figure 4.25. Final average pressure

mismatch (in L2 norm sense) for 200 data was 33.3 psi, which is a relatively high value.
This poor match is evident in the pressure match in Figure 4.24. Updated porosity and

permeability �elds after each outer iteration of the inversion method are shown in Figures

4.26 and 4.27.

4.3 Some Sensitivity Studies

We performed a number of sensitivity studies to establish the robustness of the approach

to simultaneous inversion of � and ln(k).

Sensitivity to initial � and ln(k) �elds

The dynamic data integration algorithm relies on a minimization subproblem. In a gradi-

ent based minimization technique,the initial model is an important factor for convergence.

Thus, in our data integration problem, � and ln(k) could be vital in the convergence of the
algorithm. In order to illustrate the sensitivity of the inversion response to initial �elds,

we performed a number of exercises starting from initial �elds of di�erent constant � and
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Figure 4.19: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Deterministic Example Run 3.
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Figure 4.20: Objective function values of the inversion process: Deterministic Example Run 3.
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Figure 4.21: Updated � �elds at each iteration of the inversion process: Deterministic Example
Run 3.
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Figure 4.22: Updated ln(k) �elds at each iteration of the inversion process: Deterministic Example
Run 3.
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Figure 4.23: Updated � and ln(k) �elds: Deterministic Example Run 4.

Pressure at Well 1

Time (days)

P
re

ss
u

re
 (

p
si

)

      0.      20.      40.      60.      80.     100.

   2500.

   2600.

   2700.

   2800.

   2900.

   3000.

   3100. Pressure at Well 2

Time (days)

P
re

ss
u

re
 (

p
si

)

      0.      20.      40.      60.      80.     100.

   2500.

   2600.

   2700.

   2800.

   2900.

   3000.

   3100.

Pressure at Well 3

Time (days)

P
re

ss
u

re
 (

p
si

)

      0.      20.      40.      60.      80.     100.

   2500.

   2600.

   2700.

   2800.

   2900.

   3000.

   3100. Pressure at Well 4

Time (days)

P
re

ss
u

re
 (

p
si

)

      0.      20.      40.      60.      80.     100.

   2500.

   2600.

   2700.

   2800.

   2900.

   3000.

   3100.

Figure 4.24: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Deterministic Example Run 4.

64



Objective function values

Outer Iteration, #

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
es

      0      2      4      6      8     10

0.01

0.1

1

10

Figure 4.25: Objective function values of the inversion process: Deterministic Example Run 4.
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Figure 4.26: Updated � �elds at each iteration of the inversion process: Deterministic Example
Run 4.
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Figure 4.27: Updated ln(k) �elds at each iteration of the inversion process: Deterministic Example
Run 4.

S. No. Initial � Initial ln(k) Avg Mismatch Outer Iter CPU Time
p.u. psi (L2 norm) sec

1 0.2 1.0 5.82 9 37

2 0.2 3.15 4.38 16 76

3 0.2 6.0 4.18 18 75

Run 1 0.4 3.15 4.1 17 75

Table 4.3: Summarized responses of sensitivity exercise to initial � and ln(k) �elds.

ln(k) values. The responses are tabulated in Table 4.3. The performance of Deterministic

Example Run 1 is shown for comparison.

The inverted models from the three sensitivity runs are shown in Figures 4.28, 4.29, and

4.30. The connected high � and ln(k) band connecting W2 and W3 is evident in all the

inverted models except for the last one where the initial porosity and permeability �elds
were 0.2 and 6.0, respectively. Interestingly, we �nd that the last run has the best average

pressure match (see Table 4.3). Possible reason for poor inversion in this case may be the
solution is stuck within a local minimum.

The algorithm is reasonably robust with respect to the initial �eld. However, the fact

that there is no optimality criteria for global minima makes it impossible to state de�nite
conclusions. Some initial �elds will fare better than others. Also, this sensitivity study

reveals that looking only at the pressure match may not be suÆcient.

66



Updated Porosity Field

X (feet)

Y
 (

fe
et

)

0 4000
0

4000

0.0

0.1

0.2

0.3

0.4

0.5

Updated Lnk Field

X (feet)

Y
 (

fe
et

)

0 4000
0

4000

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Figure 4.28: Updated � and ln(k) �elds: Initial Field � = 0:2 and ln(k) = 1:0.
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Figure 4.29: Updated � and ln(k) �elds: Initial Field � = 0:2 and ln(k) = 3:15.
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Figure 4.30: Updated � and ln(k) �elds: Initial Field � = 0:2 and ln(k) = 6:0. (Poor inversion)
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S. No. No. of Master Points Avg Mismatch Outer Iter CPU Time
X - Y psi (L2 norm) sec

1 2 - 2 3.01 15 15

2 3 - 3 2.24 12 20

3 4 - 4 4.52 12 35

4 6 - 6 3.22 18 92

5 7 - 7 4.65 10 112

Run 1 5 - 5 4.1 17 75

Table 4.4: Summarized responses of sensitivity exercise to number of master points.
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Figure 4.31: Updated � and ln(k) �elds: 2 � 2 Master Points Case.

Sensitivity to number of master points

Master points are the cells of the model where porosity and permeability values are itera-
tively updated in order to minimize the pressure mismatch. Convergence of the inversion

problem depends on the relative amount of data and unknown parameters involved. Thus,

the number of master points could be an important element in the solution of the data
integration algorithm.

In order to illustrate the sensitivity to the number of master points, number of master

points was varied from 2 � 2 to 7 � 7. The responses are tabulated in Table 4.4. Also

shown is the performance of Deterministic Example Run 1 for comparison.

The inverted models from these sensitivity runs are shown in Figures 4.31, 4.32, 4.33,

4.34, and 4.35, respectively. The spatially connected high � and ln(k) band connecting W2
and W3 is evident in all the inverted models. The objective function values of the inversion

processes in Table 4.4 are all reasonably good.

Increasing the number of master points may not improve the inversion pressure match.

Having too few or too many master points may make it more diÆcult to capture the major
features. It should be noted that the CPU time goes up as the number of master points

increases.
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Figure 4.32: Updated � and ln(k) �elds: 3 � 3 Master Points Case.
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Figure 4.33: Updated � and ln(k) �elds: 4 � 4 Master Points Case.
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Figure 4.34: Updated � and ln(k) �elds: 6 � 6 Master Points Case.

69



Updated Porosity Field

X (feet)

Y
 (

fe
et

)

0 4000
0

4000

0.0

0.1

0.2

0.3

0.4

0.5

Updated Ln(k) Field

X (feet)

Y
 (

fe
et

)

0 4000
0

4000

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Figure 4.35: Updated � and ln(k) �elds: 7 � 7 Master Points Case.

S. No. Updating Freq Avg Mismatch Outer Iter CPU Time
psi (L2 norm) sec

1 1 6.30 8 46

2 2 6.26 13 64

3 3 1.62 15 70

4 4 7.35 16 72

5 8 8.27 16 74

6 10 4.45 9 40

Run 1 5 4.1 17 75

Table 4.5: Summarized responses of sensitivity exercise to master point locations.

Sensitivity to master point locations

The previous section dealt with the number of master points. It is conjectured that updating

or changing the locations of the master points has a signi�cant e�ect in the inversion process.
The basis for this conjecture is that it may be possible to shift away from the local minima

to elsewhere in the feasible space by changing the locations of the master points.

A number of exercises are performed with updating the master points after every few
outer iterations. The frequency of updating the master point locations are varied from 1

to 10. The responses of the sensitivity exercise are tabulated in Table 4.5. Also shown in
the table is the performance of Deterministic Example Run 1 for comparison. It should be

noted that 5 � 5 master points were used in Deterministic Example Run 1.

The inverted models from these sensitivity runs are shown in Figures 4.36, 4.37, 4.38,
4.39, 4.40 and 4.41, respectively. The inverted models appear almost exactly the same. The

objective function values of the inversion processes (Table 4.5) vary from 1.6 to 8.3 in L2

norm sense. Updating master point locations a�ects the number of outer iterations required
to have the minimum mismatch; however, it appears that location updating does not have

a large impact on convergence.
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Figure 4.36: Updated � and ln(k) �elds: Updating frequency - every 1 iteration.
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Figure 4.37: Updated � and ln(k) �elds: Updating frequency - every 2 iterations.
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Figure 4.38: Updated � and ln(k) �elds: Updating frequency - every 3 iterations.
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Figure 4.39: Updated � and ln(k) �elds: Updating frequency - every 4 iterations.
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Figure 4.40: Updated � and ln(k) �elds: Updating frequency - every 8 iterations.
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Figure 4.41: Updated � and ln(k) �elds: Updating frequency - every 10 iterations.
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S. No. ln(k) Range ln(k) Angle � Range � Angle
X - Y (ft) (o) X - Y (ft) (o)

1 8100 - 1000 20 8000 - 1100 20

2 8100 - 1000 70 8000 - 1100 70

3 6100 - 1000 45 6000 - 1100 45

4 4100 - 1000 45 4000 - 1100 45

Run 1 8100 - 1000 45 8000 - 1100 45

Table 4.6: Prior variogram information used in sensitivity exercise.

S. No. Avg Mismatch Outer Iter CPU Time
psi (L2 norm) sec

1 2.80 20 89

2 2.35 12 63

3 3.40 14 66

4 2.23 16 76

Run 1 4.1 17 75

Table 4.7: Summarized responses of sensitivity exercise to prior variography information.

Sensitivity to prior variogram information

Prior variogram information is an important factor in a good reservoir characterization
study. From the �rst exercise in the previous section, it was evident that variography has

a signi�cant impact on the inverted models; however, the right variogram is extremely

diÆcult to infer from limited well data. A sensitivity study of the results with di�erent
variograms will help determine how well the algorithm resolve reservoir parameters with

uncertain input parameters.

In order to illustrate the sensitivity of the inversion response to variography, consider
the variograms tabulated in Table 4.6. Variogram anisotropy was changed from a ratio

of about 8:1 to 4:1. Anisotropy angle was varied from 20o to 70o. The responses of the

sensitivity exercise with di�erent prior variography information are tabulated in Table 4.7.
Also shown in the table is the performance of Deterministic Example Run 1 for comparison.

The inverted models from these sensitivity runs are shown in Figures 4.42, 4.43, 4.44,

and 4.45, respectively. Inverted models appear almost exactly the same. The objective

function values of the inversion processes in Table 4.7 varies from about 2.2 to 4.1 in L2

norm sense. These are all reasonably good pressure matches.

Sensitivity to inner optimization parameters

In the inner optimization module, the objective is to search for a primal local minima
under bound constraints of the �, ln(k) correction values. An approximate subproblem of

our original data integration problem is formulated for the minimization. The importance

of this inner optimization and consequences of relaxing the stopping criteria are relevant
sensitivities.

In order to demonstrate the sensitivity of the inversion response to inner optimization

parameters, we vary the tolerance values for objective function convergence and norm of the
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Figure 4.42: Updated � and ln(k) �elds: Prior Variogram Set 1 in Table 4.6.
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Figure 4.43: Updated � and ln(k) �elds: Prior Variogram Set 2 in Table 4.6.
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Figure 4.44: Updated � and ln(k) �elds: Prior Variogram Set 3 in Table 4.6.
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Figure 4.45: Updated � and ln(k) �elds: Prior Variogram Set 4 in Table 4.6.

S. No. Gradient Norm Tol Obj Func Tol Obj Func Conv
No.

1 5.0 �10�4 1.0 �10�5 40

2 5.0 �10�4 1.0 �10�5 10

3 5.0 �10�5 1.0 �10�5 10

4 5.0 �10�4 1.0 �10�4 40

Run 1 5.0 �10�5 1.0 �10�5 40

Table 4.8: Inner optimization parameters used in sensitivity exercise.

gradient. The inner optimization parameters used for the sensitivity studies are tabulated

in Table 4.8. The responses of the sensitivity exercise with di�erent inner optimization
parameters are tabulated in Table 4.9. Also shown in the table is the performance of

Deterministic Eexample Run 1 for comparison.

Inverted models (not shown here) capture major heterogeneity features of the reference

�eld. However, the objective function values of the inversion processes in Table 4.9 varies

signi�cantly from about 2.5 to 6.9 in L2 norm sense. When the tolerance for gradient
comparison is 5 � 10�4, the number of function and gradient evaluation remains at the

assigned minimum of 50 after �rst few outer iterations; however when this value is �xed at

5� 10�5 (more stringent tolerance), this termination criteria is not met and the number of
function evaluation is much higher (over 1000).

S. No. Avg Mismatch Outer Iteration CPU Time
psi (L2 norm) sec

1 2.51 18 79

2 6.93 14 50

3 3.72 7 32

4 3.35 10 36

Run 1 4.1 17 75

Table 4.9: Summarized responses of sensitivity exercise to inner optimization parameters.
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4.4 An Implementation Issue: Propagation of Optimal Cor-
rections

The optimal corrections from the inner optimization at master point locations are prop-

agated onto the entire �eld by kriging. We use kriging equation (Equation 4.1) for �
corrections ��i, whereas we employ the collocated cokriging equation (Equation 4.2) for

y = ln(k) corrections �yi. The correction propagation equations are given below:

��i =

nmpX
j=1

��i;j��j (4.11)

�yi =

nmpX
j=1

�yi;j�yj + �i��i (4.12)

The average corrections � will approach zero as convergence is attained; however, it

may be non-zero in the initial iterations, especially when the initial model is not that good.
In the latter case, the above optimal correction equations could be modi�ed to account for

the non-zero overall mean correction:

��i =

nmpX
j=1

��i;j��j +

0
@1�

nmpX
j=1

��i;j

1
A�� (4.13)

�yi =

nmpX
j=1

�yi;j�yj + �i(��i ���) +

0
@1�

nmpX
j=1

�yi;j

1
A�y (4.14)

where �� and �y are average �� and �y, respectively.

It was found that this alternative using an experimental mean is more likely to get into
degeneracy problems. In order to illustrate the di�erence between the two implementation,

we performed the deterministic example Run 1 inversion and compared the performance.

With � 6= 0, the inverted models are obtained after 16 outer iterations (77 seconds in
733 MHz dual processor workstation). These inverted models are shown in Figure 4.46.

The spatially connected high � and ln(k) band connecting W2 and W3 is evident in the

inverted models. However, the major features are not captured with as much detail as it
was obtained using � = 0. Figure 4.47 shows the pressure values at the four wells computed

from the true (from reference), initial and �nal updated porosity and permeability �elds.
The objective function values of the inversion process is shown in Figure 4.48. Comparing

the objective functions curves for the cases (Figures 4.6 and 4.48), it can be seen that

implementation with � = 0 is smoother than the other. Final average pressure mismatch
(in L2 norm sense) for 200 data in both the implementations is 4.13 psi.

4.5 Example 2: A Stochastic Example

A more realistic example is demonstrated here to evaluate the ability of the algorithm to
generate models of porosity and permeability from multiple well production data. Reference

porosity and permeability models are constructed �rst. Dynamic pressure responses at a
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Figure 4.46: Updated � and ln(k) �elds: Base Case � = 0.
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Figure 4.47: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Base Case.
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Figure 4.48: Objective function values of the inversion process: Base Case.
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Figure 4.49: Reference � and ln(k) �elds: Stochastic Example.

number of wells are obtained by ow simulation. The inverted �elds are compared with the
reference �elds to evaluate the capability of the algorithm.

A 2D 4,000-ft square domain is discretized into 40 � 40 grid cells of 100 � 100 ft.
Porosity and permeability �elds are shown in Figure 4.49. There are four wells: W1 at

the center of the cell (24,10), W2 at (37,17), W3 at (14,32), and W4 at (35,31), see Figure

4.49. Reservoir parameters are similar to the deterministic example unless stated otherwise.
Figure 4.50 shows the imposed production rates and the corresponding pressure responses.

It should be noted that the production rates are not very high, however the pressure decline

is signi�cant. This type of situation would arise when the storativity of the reservoir is not
high. The low permeability and good communication between the wells entails that any

measurable change in one well would be reected in the pressure responses of the other
wells. The histograms the scatter-plot of � and ln(k) are shown in Figures 4.51 and 4.52.

Mean and standard deviation of reference distributions are 0.13 and 0.04 for �, and 3.37 and

2.09 for ln(k), respectively. We used the reference � and ln(k) distributions in the inversion
exercise for the global distributions. The correlation coeÆcient of � and ln(k) is 0.82. The

variogram parameters are shown in Table 4.10.

78



Flowrate at Well 1

Time (days)

F
lo

w
ra

te
 (

S
T

B
D

)

      0.      20.      40.      60.      80.     100.

      .0

     5.0

    10.0

    15.0

    20.0

    25.0

    30.0 Pressure at Well 1

Time (days)

P
re

ss
u

re
 (

p
si

)

      0.      20.      40.      60.      80.     100.

   3000.

   3100.

   3200.

   3300.

   3400.

   3500.

   3600.

Flowrate at Well 2

Time (days)

F
lo

w
ra

te
 (

S
T

B
D

)

      0.      20.      40.      60.      80.     100.

      .0

     5.0

    10.0

    15.0

    20.0

    25.0

    30.0 Pressure at Well 2

Time (days)

P
re

ss
u

re
 (

p
si

)

      0.      20.      40.      60.      80.     100.

   3000.

   3100.

   3200.

   3300.

   3400.

   3500.

   3600.

Flowrate at Well 3

Time (days)

F
lo

w
ra

te
 (

S
T

B
D

)

      0.      20.      40.      60.      80.     100.

      .0

     5.0

    10.0

    15.0

    20.0

    25.0

    30.0 Pressure at Well 3

Time (days)

P
re

ss
u

re
 (

p
si

)

      0.      20.      40.      60.      80.     100.

   3000.

   3100.

   3200.

   3300.

   3400.

   3500.

   3600.

Flowrate at Well 4

Time (days)

F
lo

w
ra

te
 (

S
T

B
D

)

      0.      20.      40.      60.      80.     100.

      .0

     5.0

    10.0

    15.0

    20.0

    25.0

    30.0 Pressure at Well 4

Time (days)

P
re

ss
u

re
 (

p
si

)

      0.      20.      40.      60.      80.     100.

   3000.

   3100.

   3200.

   3300.

   3400.

   3500.

   3600.

Figure 4.50: Production data (pressure and ow rates) obtained from the reference �eld: Stochastic
Example.
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Figure 4.51: Histograms of reference � and ln(k) �elds: Stochastic Example.
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Figure 4.52: Scatterplot of reference � and ln(k) distributions: Stochastic Example.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.0

1 Sph 0.6 2500 - 3600 0

2 Sph 0.4 4000 - 3250 0

Table 4.10: Variogram information used for both � and ln(k): Stochastic Example Run 1.
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Figure 4.53: Static well data for � and ln(k): Stochastic Example Run 1.
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Figure 4.54: Updated � and ln(k) �elds: Stochastic Example Run 1.

Run 1: Inversion with production data, global histogram, reference vari-

ogram information, and reference local hard data

For this inversion exercise, we used homogeneous initial porosity and permeability �elds of
� = 0:4 and ln(k) = 3:15 ln(mD). Reference global distributions, the reference variograms,

and the local hard data shown in Figure 4.53 are used.

The inverted models are obtained after 7 outer iterations (134 seconds in 733 MHz dual

processor workstation). The pressure responses in the updated porosity and permeability

�elds converge to the reference pressure data. These inverted models are shown in Figure
4.54. Figure 4.55 shows the pressure values at the four wells computed from the true (from

reference), initial and �nal updated � and ln(k) �elds. Although the pressure match of
the updated �elds is not close particularly in the late time period, there is a signi�cant

reduction of the mismatch from the initial �eld responses. The objective function values of

the inversion process is shown in Figure 4.56. Final average pressure mismatch (in L2 norm
sense) for 200 data was 10.4 psi. Updated � and ln(k) �elds after each outer iteration of

the inversion method are shown in Figures 4.57 and 4.58.
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Figure 4.55: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Stochastic Example Run 1.
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Figure 4.56: Objective function values of the inversion process: Stochastic Example Run 1.
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Figure 4.57: Updated � �elds at each iteration of the inversion process: Stochastic Example Run
1.
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Figure 4.58: Updated ln(k) �elds at each iteration of the inversion process: Stochastic Example
Run 1.
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Figure 4.59: Static well data for � and ln(k): Stochastic Example Run 2.
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Figure 4.60: Updated � and ln(k) �elds: Stochastic Example Run 2.

Run 2: Inversion with production data, global histogram, reference vari-

ogram information, but di�erent local hard data

In this case, we used the same homogeneous initial porosity and permeability �elds of � = 0:4

and ln(k) = 3:15 ln(mD). Reference global distributions are used along with reference

variograms; however a di�erent set of local hard data (extracted from the reference �elds)
are also used in the inversion run below (shown in Figure 4.59). The idea for the exercise

is to determine how much information was incorporated into the �nal models.

The inverted models are obtained after 15 outer iterations (254 seconds in 733 MHz dual

processor workstation). The pressure responses in the updated porosity and permeability
�elds converge to the reference pressure data. These inverted models are shown in Figure

4.60. Figure 4.61 shows the pressure values at the four wells computed from the true (from
reference), initial and �nal updated � and ln(k) �elds. Pressure match of the updated �elds,

in this case, is better than that of Run 1. The objective function values of the inversion

process are much lower and smooth (shown in Figure 4.62). Final average pressure mismatch
(in L2 norm sense) for 200 data was 6.9 psi. Updated � and ln(k) �elds after each outer

iteration of the inversion method are shown in Figures 4.63 and 4.64.
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Figure 4.61: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Stochastic Example Run 2.
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Figure 4.62: Objective function values of the inversion process: Stochastic Example Run 2.
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Figure 4.63: Updated � �elds at each iteration of the inversion process: Stochastic Example Run
2.
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Figure 4.64: Updated ln(k) �elds at each iteration of the inversion process: Stochastic Example
Run 2.
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4.6 Discussion

In this chapter, we presented a newly developed algorithm for simultaneous inversion of

porosity and permeability via collocated cokriging. The implemented code has been demon-
strated with a synthetic and realistic reservoir example. Some sensitivity studies have been

performed to investigate the robustness of the algorithm. Some implementation issues have

been addressed. Inversion results are positive and informative. However, there are scopes
of improvement in this area of research.

Some of the �ndings from the illustrated examples and sensitivity analyses in this chapter
include:

� inversion with only production data and prior variography information may not be
suÆcient to capture heterogeneity features

� global distribution information is important in inversion performance

� minimum pressure mismatch criterion by itself may not lead to the best inverted

model attainable

� unrealistic initial porosity and permeability �elds may a�ect the inversion responses

� constraints are important for the overall inversion process

� number of master points a�ects the solution. Inversion with too few master points
may lead to poor inversion; on the contrary, inversion with too many master points

increases the execution time and at the same time may not guarantee better inversion

solution

� increasing the frequency of master point location updating may reduce the possibility

of getting stuck in local minima, but may not guarantee it

� prior variography information can be critical to inversion performance.
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Chapter 5

Simultaneous Inversion of Unique
�/ln(k) Features From Production
Data

We presented an algorithm for simultaneous inversion of � and K in Chapter 4. The ability

and the e�ectiveness of the algorithm was discussed in that chapter. In this chapter, we

analyze the inversion experiment with reservoir models with unique �/ln(k) features.

5.1 A Synthetic Reservoir Model with Unique �/ln(k) Fea-
tures

Consider a 2D example of 4,000 ft by 4,000 ft domain that is discretized into 40 � 40

grid cells of 100 � 100 ft. Porosity and permeability �elds are shown in Figure 5.1. It is
evident from the �gure that reference porosity �eld has large continuity in the North-South

direction. Porosity values gradually decrease in the Westward direction. Whereas, the

permeability �eld has large continuity in Southwest-Northeast direction. In the Southeast
portion of the reservoir the permeability values are high. Permeability decreases gradually

in Northeastward direction. There are 8 wells: W1 at the center of the cell (34,33), W2

at (33,8), W3 at (25,12), W4 (18,27), W5 (14,6), W6 (30,17), W7 (8,33), and W8 (35,12),
respectively. Wells are shown in Figure 5.1. The four boundaries are no-ow boundaries,

reservoir thickness is 100 ft, viscosity is 0.2 cp, formation compressibility is 10�6 psi�1, and

well radius is 0.3 ft. Figure 5.2 shows the imposed production rates and the corresponding
numerically simulated pressure responses at the di�erent wells. The global histograms of

the reference distributions and the scatter-plot between porosity and ln(k) are shown in
Figures 5.3 and 5.4, respectively. Mean and standard deviation of reference distributions

are 0.129 and 0.056 for �, and 1.33 and 1.608 for ln(k). The low average porosity con�rms

the low storativity of the reservoir. Correlation coeÆcient of the two distributions is 0.31.
Variogram for both � and ln(k) of the reference �elds are shown in Figure 5.5.

We employ the reference distributions as the global distribution information. It is true

that we do not have this information a priori, in that case we could use an approximate

global distribution informed by some secondary data such as seismic data. Static well data
used in the example are shown in Figure 5.6. We perform the inversion with a number of

prior variogram models and analyze the inverted models in each of the runs.
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Figure 5.1: Reference � and ln(k) �elds.
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Figure 5.2: Production data (pressure and ow rates) obtained for 8 wells from the reference �eld.
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Figure 5.6: Static well data for � and ln(k).

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.55 14000 - 4000 0

2 Sph 0.4 13000 - 10000 0

Table 5.1: Prior variogram information used for �: Run 1.

Run 1

The prior variogram model used in this run is shown in Tables 5.1 and 5.2 for � and ln(k).

The inversion was run for 16 outer iterations using 6 � 6 (=36) master points in each

iteration. CPU time for the run was only 315 seconds in a 1.8 GHz Pentium 4 machine.
The pressure responses in the updated porosity and permeability �elds converge to the

reference pressure data. These inverted models are shown in Figure 5.7. Figure 5.8 shows

the pressure values at the eight wells computed from the true (from reference), initial and
�nal updated porosity and permeability �elds. The updated �elds by the new method

accurately reproduce the true pressure data at all wells except Well W4 which is located at

(1750.0, 2650.0). The objective function values of the inversion process are shown in Figure
5.9. Final average pressure mismatch in L2 norm sense was 14.7 psi. Updated porosity and

permeability �elds after each outer iteration of the inversion method are shown in Figures
5.10 and 5.11.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.5 14000 - 9000 0

2 Sph 0.45 13000 - 10000 0

Table 5.2: Prior variogram information used for both ln(k): Run 1.
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Figure 5.7: Updated � and ln(k) �elds: Run 1.
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Figure 5.8: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Run 1.
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Figure 5.9: Objective function values of the inversion process: Run 1.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.55 4000 - 10000 0

2 Sph 0.4 10000 - 12000 0

Table 5.3: Prior variogram information used for �: Run 2.

Run 2

The prior variogram model used in this run is shown in Tables 5.3 and 5.4 for � and ln(k).

The inversion was run for 17 outer iterations using 6 � 6 (=36) master points in each

iteration. CPU time for the run was only 331 seconds in a 1.8 GHz Pentium 4 machine.
The pressure responses in the updated porosity and permeability �elds converge to the

reference pressure data. These inverted models are shown in Figure 5.12. Figure 5.13 shows
the pressure values at the eight wells computed from the true (from reference), initial and

�nal updated porosity and permeability �elds. The updated �elds by the new method

accurately reproduce the true pressure data at all wells except the same Well W4 as in Run
1. However, the mismatch in this case has reduced. The objective function values of the

inversion process are shown in Figure 5.14. Final average pressure mismatch in L2 norm

sense was 12.5 psi. Updated porosity and permeability �elds after each outer iteration of
the inversion method are shown in Figures 5.15 and 5.16.

Having analyzed the inverted models from the two runs, it could be concluded that

the algorithm provides reasonably good models. However, better models are obtained for

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.5 4000 - 9000 0

2 Sph 0.45 10000 - 10000 0

Table 5.4: Prior variogram information used for ln(k): Run 2.
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Figure 5.10: Updated � �elds at each iteration of the inversion process: Run 1.
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Figure 5.11: Updated ln(k) �elds at each iteration of the inversion process: Run 1.
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Figure 5.12: Updated � and ln(k) �elds: Run 2.
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Figure 5.13: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Run 2.
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Figure 5.14: Objective function values of the inversion process: Run 2.

permeability than those for porosity. In the �rst run, we started with a prior variogram
model with high continuity in the North-South direction for both � and ln(k), the inverted

models had right heterogeneity structure for ln(k). In the second run, we started with an
almost isotropic model. In this case also we retrieve the right structure for ln(k). However,

for � the nugget e�ect is exaggerated. Well W4 (1750.0, 2650.0) in both runs had the

highest mismatch. In the reference models, � and ln(k) values in this grid block are 0.131
and 0.542; average values for both variables. Inspecting the inverted �elds, we could see

poor inverted values around this block.

Note that the termination criteria for the outer loop of the inversion algorithm are

maximum number of outer iterations or a tolerance value for the objective function. If the

second criterion is not met, we �rst perform the inversion with a large value for the number
of outer iterations. Then we examine the objective function curve and in the next run we

set the number of outer iterations to this value. This could be automated in the code by

storing the best model and the number of outer loops, and reporting the outputs up to this
outer iteration.

5.2 E�ect of Production Data

In this section, we investigate the e�ect of production data on the inversion outcome. We

reduce the number of wells to 6 and 4, and perform the inversion. We employ similar

parameters as in the previous section apart from the production data.

6 Well Case

The 6 wells are: W1 at the center of the cell (34,33), W2 at (33,8), W3 at (25,12), W4
(18,27), W5 (14,6), and W6 (30,17), respectively. The wells are shown in Figure 5.1. Fig-

ure 5.17 shows the imposed production rates and the corresponding numerically simulated
pressure responses at these wells. The anisotropic low nugget prior variogram model used

in this run is shown in Tables 5.3 and 5.4 for � and ln(k). The inversion was run for 7 outer

iterations using 6 � 6 (=36) master points in each iteration. CPU time for the run was only
143 seconds in a 1.8 GHz Pentium 4 machine. The pressure responses in the updated poros-

ity and permeability �elds converge to the reference pressure data. These inverted models
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Figure 5.15: Updated � �elds at each iteration of the inversion process: Run 2.
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Figure 5.16: Updated ln(k) �elds at each iteration of the inversion process: Run 2.

100



Flowrate FlowratePressure Pressure

            Well 1

Days

S
T

B
D

      0.      20.      40.     60.      80.    100.    120.
      0.

     20.

     40.

     60.

     80.

    100.             Well 1

Days

P
si

a

      0.      20.      40.     60.      80.    100.    120.
   1900.

   2300.

   2700.

   3100.

   3500.
            Well 2

Days

S
T

B
D

      0.      20.      40.     60.      80.    100.    120.
      0.

     20.

     40.

     60.

     80.

    100.             Well 2

Days

P
si

a

      0.      20.      40.     60.      80.    100.    120.
   1900.

   2300.

   2700.

   3100.

   3500.

            Well 3

Days

S
T

B
D

      0.      20.      40.     60.      80.    100.    120.
      0.

     20.

     40.

     60.

     80.

    100.             Well 3

Days

P
si

a

      0.      20.      40.     60.      80.    100.    120.
   1900.

   2300.

   2700.

   3100.

   3500.
            Well 4

Days

S
T

B
D

      0.      20.      40.     60.      80.    100.    120.
      0.

     20.

     40.

     60.

     80.

    100.             Well 4

Days

P
si

a

      0.      20.      40.     60.      80.    100.    120.
   1900.

   2300.

   2700.

   3100.

   3500.

            Well 5

Days

S
T

B
D

      0.      20.      40.     60.      80.    100.    120.
      0.

     20.

     40.

     60.

     80.

    100.             Well 5

Days

P
si

a

      0.      20.      40.     60.      80.    100.    120.
   1900.

   2300.

   2700.

   3100.

   3500.
            Well 6

Days

S
T

B
D

      0.      20.      40.     60.      80.    100.    120.
      0.

     20.

     40.

     60.

     80.

    100.             Well 6

Days

P
si

a

      0.      20.      40.     60.      80.    100.    120.
   1900.

   2300.

   2700.

   3100.

   3500.

Figure 5.17: Production data (pressure and ow rates) obtained from the reference �eld: 6 Well
Case.

are shown in Figure 5.18. Figure 5.19 shows the pressure values at the six wells computed
from the true (from reference), initial and �nal updated porosity and permeability �elds.

The updated �elds by the new method accurately reproduce the true pressure data at all

wells except Well W4 that is located at (1750.0, 2650.0). The objective function values of
the inversion process is shown in Figure 5.20. Final average pressure mismatch in L2 norm

sense was 6.35 psi. Updated porosity and permeability �elds after each outer iteration of
the inversion method are shown in Figures 5.21 and 5.22.

4 Well Case

The 4 wells are: W1 at the center of the cell (34,33), W2 at (33,8), W3 at (25,12), and

W4 (18,27). The wells are shown in Figure 5.1. Figure 5.23 shows the imposed production
rates and the corresponding numerically simulated pressure responses at these wells. The

prior variogram model used in this run is shown in Tables 5.3 and 5.4 for � and ln(k). The

inversion was run for 7 outer iterations using 6 � 6 (=36) master points in each iteration.
CPU time for the run was only 143 seconds in a 1.8 GHz Pentium 4 machine. The pressure

responses in the updated porosity and permeability �elds converge to the reference pressure
data. These inverted models are shown in Figure 5.24. Figure 5.25 shows the pressure values

at the four wells computed from the true (from reference), initial and �nal updated porosity

and permeability �elds. The updated �elds by the new method accurately reproduce the
true pressure data at all wells except Well W4 that is located at (1750.0, 2650.0). The

objective function values of the inversion process is shown in Figure 5.26. Final average
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Figure 5.18: Updated � and ln(k) �elds: 6 Well Case.
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Figure 5.19: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): 6 Well Case.
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Figure 5.20: Objective function values of the inversion process: 6 Well Case.
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Figure 5.21: Updated � �elds at each iteration of the inversion process: 6 Well Case.
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Figure 5.22: Updated ln(k) �elds at each iteration of the inversion process: 6 Well Case.
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Figure 5.23: Production data (pressure and ow rates) obtained from the reference �eld: 4 Well
Case.
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Figure 5.24: Updated � and ln(k) �elds: 4 Well Case.

pressure mismatch in L2 norm sense was 7.69 psi. Updated porosity and permeability �elds
after each outer iteration of the inversion method are shown in Figures 5.27 and 5.28.

Conclusion

It could be concluded that using 4, 6 or 8 wells for porosity, permeability inversion leads to

similar models for the present synthetic reservoir model with unique heterogeneity features.
Originally, the intention was to investigate whether the developed algorithm can invert

�, ln(k) models where in some portions of the reservoir the correlation between the two
petrophysical variables is poor. The responses of the inversion runs and the sensitivities

performed con�rm that it is possible to invert for this kind of models. However, it ap-

pears ln(k) models obtained through this algorithm retrieves heterogeneity features better
than that of �. A possible solution of this limitation may be to calculate the � gradients

independently from the ow and constitutive equations involved.
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Figure 5.25: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): 4 Well Case.
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Figure 5.26: Objective function values of the inversion process: 4 Well Case.
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Figure 5.27: Updated � �elds at each iteration of the inversion process: 4 Well Case.
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Figure 5.28: Updated ln(k) �elds at each iteration of the inversion process: 4 Well Case.
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Figure 5.29: Static well data for � and ln(k): 15 Local Data Case.

5.3 Inuence of Local Data

In all the previous inversion runs, we performed the inversion using \many" local data (30
precisely). It would be interesting to see how much incremental contribution of these local

data is in the inverted models. In order to investigate this we perform the inversion by

varying the number of local data to 15 and 0. We use similar parameters as used in the
previous section for 6 well case. The 6 wells are: W1 at the center of the cell (34,33), W2 at

(33,8), W3 at (25,12), W4 (18,27), W5 (14,6), and W6 (30,17). Wells are shown in Figure

5.1. Figure 5.17 shows the imposed production rates and the corresponding numerically
simulated pressure responses at these wells. The prior variogram model used in this run is

shown in Tables 5.3 and 5.4 for � and ln(k).

15 Local Data Case

Local data used in this run are shown in Figure 5.29. The inversion was run for 6 outer
iterations using 6 � 6 (=36) master points in each iteration. CPU time for the run was

only 125 seconds in a 1.8 GHz Pentium 4 machine. The pressure responses in the updated

porosity and permeability �elds converge to the reference pressure data. These inverted
models are shown in Figure 5.30. Figure 5.31 shows the pressure values at the six wells

computed from the true (from reference), initial and �nal updated porosity and permeability
�elds. The updated �elds by the new method accurately reproduce the true pressure data

at all wells. Even Well W4 located at (1750.0, 2650.0) pressure match is good in this case.

The objective function values of the inversion process is shown in Figure 5.32. Final average
pressure mismatch in L2 norm sense was 4.05 psi. This mismatch value compared to that

(6.35) with 30 local data is even better. Updated porosity and permeability �elds after each

outer iteration of the inversion method are shown in Figures 5.33 and 5.34.
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Figure 5.30: Updated � and ln(k) �elds: 15 Local Data Case.
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Figure 5.31: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): 15 Local Data Case.
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Figure 5.32: Objective function values of the inversion process: 15 Local Data Case.
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Figure 5.33: Updated � �elds at each iteration of the inversion process: 15 Local Data Case.
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Figure 5.34: Updated ln(k) �elds at each iteration of the inversion process: 15 Local Data Case.
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Figure 5.35: Updated � and ln(k) �elds: No Local Data Case. Poor Convergence.

No Local Data Case

This inversion run was performed without any local data. The inversion was run for 6

outer iterations using 36 master points in each iteration. CPU time for the run was only

115 seconds in a 1.8 GHz Pentium 4 machine. The pressure responses in the updated �
and ln(k) �elds do not converge to the reference pressure data. These inverted models are

shown in Figure 5.35. Figure 5.36 shows the pressure values at the six wells computed from

the true (from reference), initial and �nal updated porosity and permeability �elds. The
updated �elds by the new method accurately reproduce the true pressure data at Wells

W2, W3 and W6 only. Well W1 pressure match curve reveals early and late time mismatch
indicating improper heterogeneity capture in both the vicinity and the distant grid blocks.

Well W4, located at (1750.0, 2650.0), has the greatest mismatch as was evident in most of

the previous inversion exercises. The objective function values of the inversion process is
shown in Figure 5.37. It is evident from the �gure that realistically no improvement took

place after the second outer iteration. It appears that the solution is stuck in some kind of

local minimum that is far from the global minimum. Final average pressure mismatch in
L2 norm sense was 17.24 psi, a signi�cantly high value. Updated porosity and permeability

�elds after each outer iteration of the inversion method are shown in Figures 5.38 and 5.39.

Conclusion

From the above sensitivity exercise, it could be concluded that integration of both local
data and dynamic production is important for good inverted models. This con�rms the

hypothesis that di�erent sources of data contain valuable information. One needs to appro-

priately combine all available information. The extremely poor inversion outcomes in case
of no local data reveals that in order to constrain � and ln(k) values properly, some local

data is essential. However, this does not imply that the more the local data being used, the

better the inverted models. This is revealed by comparing the cases using 15 and 30 local
data cases.

Local data helps regularize the nonlinear inverse problem. The inherent non-uniqueness
of inverse problem causes the solution to be stuck in some local minimum unless some

regularization scheme is used.
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Figure 5.36: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): No Local Data Case.
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Figure 5.37: Objective function values of the inversion process: No Local Data Case.
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Figure 5.38: Updated � �elds at each iteration of the inversion process: No Local Data Case.
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Figure 5.39: Updated ln(k) �elds at each iteration of the inversion process: No Local Data Case.
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Chapter 6

Simultaneouos Inversion with
Variogram Updating

There are rarely enough data to calculate reliable variograms. This is particularly true in

petroleum reservoir characterization. It is hardly possible to model reasonably good hori-
zontal variograms with a few well data. Expert modeler would use experience or analogue

information; however, each reservoir is unique and the reasonableness of analogue data can

always be questioned. In this chapter, we present a technique to assist with variogram
inference by using information available from production history or well test data. The

new algorithm further improves upon the inversion solutions that are obtained using the

algorithm presented in Chapter 4.

The algorithm will be explained. We demonstrate the results of the developed code with

some synthetic realistic reservoir models. The outcome of this approach in addressing the
problem is remarkable when suÆcient production data exist.

6.1 Variogram Inversion Algorithm

The algorithm developed here builds upon the algorithm presented in Chapter 4. We extend

this dynamic data integration algorithm for petrophysical property modeling to invert for

spatial continuity parameters. In order to achieve this, we have implemented a module to
determine updated experimental variograms of the property models, and another module

to automatically �t these dynamically updated experimental variograms. The automatic

variogram �tting module relies on an `almost' exhaustive search algorithm in a L2 norm
basis. The L2 norm is calculated using an inverse squared distance weighting approach

where short distances are emphasized.

The inversion code requires additional parameters for variogram inversion. One needs

the parameters required for experimental variogram calculation. Namely, the number of

lags, lag distance, lag tolerance, azimuth angles, angle tolerance and bandwidths.

Extension for Variogram Updating

The incorporation of experimental variogram calculation and automatic variogram modeling

module is as follows:
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1. Perform Steps (1) to (10) discussed for simultaneous inversion algorithm in Chapter

4 using a priori variogram information.

2. Calculate experimental variograms of updated � and ln(k) �elds.

3. Perform automatic variogram modeling with an `almost' exhaustive search algorithm
based on a weighted L2 norm.

4. Update the prior variogram parameters with the new ones.

5. Repeat Steps (1) to (4) until convergence is achieved in the inversion process.

In this modi�ed algorithm the variogram models that are to be used for kriging at

each outer iteration are updated. This updating is naturally informed to some extent by

the production data at each outer iteration. In the original version of the algorithm, the
variogram models are kept unchanged. Thus, even if incremental information is captured

from production data, the initial variogram information of is used at each outer iteration.
The new algorithm removes some of these restictions by dynamically updating the variogram

models. The parameters that are �tted in the updating module are the ranges of each

variogram structure, sill contribution, angle of anistropy, and nugget e�ect.

6.2 A Synthetic Application

A synthetic example is presented here to evaluate the ability of the algorithm to invert

for variogram parameters using multiple well production data. Reference porosity and
permeability models are constructed �rst. Pressure responses at a number of wells are

obtained through ow simulation.

The 2D 4,000-ft square domain is discretized into 40 � 40 grid cells of 100 � 100 ft.

Porosity and permeability �elds are shown in Figure 6.1. There are four wells: W1 at the

center of the cell (24,10), W2 at (37,17), W3 at (14,32), and W4 at (35,31). Wells are shown
in Figure 6.1. The four boundaries are constant pressure boundaries, reservoir thickness is

100 ft, viscosity is 0.2 cp, formation compressibility is 10�6 psi�1, and well radius is 0.3 ft.

Figure 6.2 shows the imposed production rates and the corresponding numerically simulated
pressure responses at the di�erent wells. The global histograms and the scatter-plot between

porosity and ln(k) are shown in Figures 6.3 and 6.4, respectively. Mean and standard

deviation of reference distributions are 0.13 and 0.06 for �, and 1.43 and 1.96 for ln(k). The
low average porosity con�rms the low storativity of the reservoir. Correlation coeÆcient

of the two distributions is 0.79. Variogram for both � and ln(k) of the reference �elds are
shown in Figure 6.5. The well data is inadequate for variogram inference. Using only this

many data, one can hardly model or infer horizontal variograms. Even with unusually large

lag tolerance and bandwidth used in variogram estimation, realistic variograms could not
be estimated (shown in Figure 6.6). We do not have much con�dence in the variograms

estimated from the well data. Our objective here is to account for production data and

estimate a realistic variogram model for the reservoir.

The data integration algorithm devised here requires the well data, the production

history (or well test data), global distribution information and a prior guess of the variogram
model. We employ the reference distributions as the global distribution information. It is

true that we do not have this information a priori; we could use an approximate global
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Figure 6.1: Reference � and ln(k) �elds: Example 1.

distribution informed by some secondary data (for instance, seismic data). Static well used

in the example are shown in Figure 6.7.

In order to demonstrate the ability of the developed code for variogram estimation and

uncertainty, we use a number of prior variogram models and analyze the updated variograms
in each of the runs.

Run 1

The prior variogram models used in this run for � and ln(k) are given in Equations 6.1 and

6.2:

�(h) = 0:05 + 0:5Sph(h)
ax = 7000
ay = 7000

+ 0:45Sph(h)
ax = 4000
ay = 4000

(6.1)

and

y(h) = 0:05 + 0:55Sph(h)
ax = 3500
ay = 3500

+ 0:4Sph(h)
ax = 6000
ay = 6000

: (6.2)

The data integration code was run for 15 outer iterations using 6 � 6 (=36) master points
in each iteration. CPU time for the run was only 320 seconds in a 1.8 GHz Pentium 4

personal computer. The updated variograms for � and ln(k) are shown in Figures 6.8,

6.9, 6.10, and 6.11, for directions with azimuth 0 and 90. A close look at the variograms
indicates improvement of the estimated variograms with the iterations. The dynamic data

integration mismatch in L2 norms for each iteration is shown in Figure 6.12. The �nal L2

norm of the pressure march was 6.51. The prior initial variogram models were isotropic for
both � and ln(k), however the estimated variograms at each iteration reveals a reasonable

anisotropy. It should be pointed that with inverse squared distance mismatch norm for
variogram updating, it is diÆcult to good match at large lag distances in the updated model.

The reason being the higher weights given to short lag distances. After 15 iterations, the

�nal updated variogram models are given in Tables 6.1 and 6.2, respectively for � and ln(k).
It is evident that this approach can provide a more realistic variogram than what we get

from the experimental variogram (Figure 6.6) using only static well data.
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Figure 6.2: Production data (pressure and ow rates) obtained from the reference �eld: Example
1.
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Figure 6.4: Scatterplot between reference � and ln(k) values: Example 1.

γ

Distance

Phi Reference Variograms

0 400 800 1200 1600 2000
.0

.2

.4

.6

.8

1.0

1.2

γ

Distance

Lnk Reference Variograms

0 400 800 1200 1600 2000
.0

.2

.4

.6

.8

1.0

1.2
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Figure 6.6: Variograms estimated from well data for � and ln(k): Example 1. (X direction - dark,
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Figure 6.7: Static well data for � and ln(k): Example 1.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.0

1 Sph 0.141 1000 - 9720 0

2 Sph 0.859 1475 - 1135 0

Table 6.1: Final variogram model obtained for � after 15 iterations: Example 1 Run 1.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.008

1 Sph 0.482 1425 - 1062 0

2 Sph 0.51 1600 - 1184 0

Table 6.2: Final variogram model obtained for ln(k) after 15 iterations: Example 1 Run 1.
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Figure 6.8: Reference, prior and updated variograms (experimental - dotted line, model - solid line)
for � at each outer iteration: Example 1 Run 1. (Direction with azimuth 0)
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Figure 6.9: Reference, prior and updated variograms (experimental - dotted line, model - solid line)
for � at each outer iteration: Example 1 Run 1. (Direction with azimuth 90)
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Figure 6.10: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: Example 1 Run 1. (Direction with azimuth 0)
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Figure 6.11: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: Example 1 Run 1. (Direction with azimuth 90)
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Figure 6.12: Mismatch norm of data integration at each outer iteration: Example 1 Run 1.

Run 2

The prior variogram models used in this run for � and ln(k) are given in Equations 6.3 and

6.4:

�(h) = 0:25 + 0:5Sph(h)
ax = 1000
ay = 1000

+ 0:25Sph(h)
ax = 4000
ay = 4000

(6.3)

and

y(h) = 0:25 + 0:55Sph(h)
ax = 1500
ay = 1500

+ 0:2Sph(h)
ax = 6000
ay = 6000

: (6.4)

The nugget e�ect in the prior variograms is increased and the ranges are decreased for
both � and ln(k) compared to those used in Run 1. The data integration code was run

for 15 outer iterations using 6 � 6 (=36) master points in each iteration. CPU time for

the run was only 295 seconds in a 1.8 GHz Pentium 4 personal computer. The updated
variograms for � and ln(k) are shown in Figures 6.13, 6.14, 6.15, and 6.16, for directions

with azimuth 0 and 90. A close look at the variograms indicates improvement of the

estimated variograms with the iterations. The dynamic data integration mismatch in L2

norms for each iteration is shown in Figure 6.17. The �nal L2 norm of the pressure march

was 6.04. The prior initial variogram models were isotropic for both � and ln(k), however
the estimated variograms at each iteration reveals a reasonable anisotropy. After 15 outer

iterations, the �nal updated variogram models are given in Tables 6.3 and 6.4, respectively

for � and ln(k). It is evident that this approach can provide a more realistic variogram than
what we get from the experimental variogram (Figure 6.6) obtained using only static well

data. The prior variogram models had a nugget e�ect of 0.25 that was updated to almost

negligible nugget e�ect which is closer to the reference.

Run 3

The prior variogram models used in this run for � and ln(k) are given in Equations 6.5 and

6.6:

�(h) = 0:75 + 0:05Sph(h)
ax = 1000
ay = 1000

+ 0:2Sph(h)
ax = 7000
ay = 7000

(6.5)
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Figure 6.13: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: Example 1 Run 2. (Direction with azimuth 0)

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.047

1 Sph 0.176 1050 - 911 0

2 Sph 0.777 1062 - 861 0

Table 6.3: Final variogram model obtained for � after 15 iterations: Example 1 Run 2.
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Figure 6.14: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: Example 1 Run 2. (Direction with azimuth 90)

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.001

1 Sph 0.058 800 - 420 0

2 Sph 0.941 1312 - 1100 0

Table 6.4: Final variogram model obtained for ln(k) after 15 iterations: Example 1 Run 2.
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Figure 6.15: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: Example 1 Run 2. (Direction with azimuth 0)
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Figure 6.16: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: Example 1 Run 2. (Direction with azimuth 90)
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Figure 6.17: Mismatch norm of data integration at each outer iteration: Example 1 Run 2.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.063

1 Sph 0.649 850 - 3404 0

2 Sph 0.288 5937 - 831 0

Table 6.5: Final variogram model obtained for � after 16 iterations: Example 1 Run 3.

and

y(h) = 0:75 + 0:05Sph(h)
ax = 1500
ay = 1500

+ 0:2Sph(h)
ax = 8000
ay = 8000

: (6.6)

The nugget e�ect in the prior variograms is increased to 75% for both � and ln(k) in this

case. The data integration code was run for 16 outer iterations using 6 � 6 (=36) master
points in each iteration. CPU time for the run was only 312 seconds in a 1.8 GHz Pentium

4 personal computer. The updated variograms for � and ln(k) are shown in Figures 6.18,

6.19, 6.20, and 6.21, for directions with azimuth 0 and 90. A close look at the variograms
indicates improvement of the estimated variograms with the iterations. The dynamic data

integration mismatch in L2 norms for each iteration is shown in Figure 6.22. The �nal L2

norm of the pressure march was 0.588, a remarkably low mismatch value. The prior initial
variogram models were isotropic for both � and ln(k), however the estimated variograms at

each iteration reveals a reasonable anisotropy. After 16 outer iterations, the �nal updated

variogram models are given in Tables 6.5 and 6.6 for � and ln(k). It is evident that this
approach can provide a more realistic variogram than what we get from the experimental

variogram (Figure 6.6). The prior variogram model with high nugget e�ect of 0.75 led to
�nal updated variogram model with a low nugget e�ect close to the reference value.

Some Conclusions From Example One

Having analyzed the updated variograms in the �rst example, it could be concluded that the

developed code provides reasonably good variogram models using multiple well production
data. Some of the salient features of variogram information extraction from production

data in this example are the following.
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Figure 6.18: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: Example 1 Run 3. (Direction with azimuth 0)

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.072

1 Sph 0.053 1312 - 220 0

2 Sph 0.875 1400 - 2310 0

Table 6.6: Final variogram model obtained for ln(k) after 16 iterations: Example 1 Run 3.
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Figure 6.19: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: Example 1 Run 3. (Direction with azimuth 90)
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Figure 6.20: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: Example 1 Run 3. (Direction with azimuth 0)
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Figure 6.21: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: Example 1 Run 3. (Direction with azimuth 90)
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Figure 6.22: Mismatch norm of data integration at each outer iteration: Example 1 Run 3.

� Irrespective of prior variogram models with high or low nugget e�ect, we get back the
low nugget e�ect of the reference distribution. It should be noted that the experimen-

tal variograms are obtained from gridded distribution, thus the smallest lag distance

depends on the smallest dimension of the grid blocks.

� Range convergence is good for both � and ln(k).

� Anisotropy convergence is also captured reasonably well in the �nal updated variogram
models.

In the subsequent section, we will investigate the response of the developed code in

the event of high nugget e�ect in the reference distribution. Given the di�usive nature of

ow data, it would be interesting to see if the inversion algorithm can retrieve high spatial
randomness in the reference distribution.

6.3 High Nugget E�ect Inversion Using Production Data

It is expected that inverted variogram models using production data will have very low

nugget e�ect. The reason for such a hypothesis is the fact that subsurface reservoir uid

ow is di�usive in nature. Nevertheless, it would be interesting to perform some study of
nugget e�ect inversion.

As in the earlier example, reference porosity and permeability models are constructed
�rst. Pressure responses at a number of wells are obtained through ow simulation.

This 2D example of 4,000-ft square domain is discretized into 40 � 40 grid cells of 100

� 100 ft. Porosity and permeability �elds are shown in Figure 6.23. There are 10 wells:
Well W1 at the center of the cell (24,10), Wells W2, W3, W4, W5, W6, W7, W8, W9 and

W10 at cells (37,17), (14,32), (35,31), (34,23), (28,13), (13,33), (16,29), (19,10), and (9,17),
respectively. Wells are shown in Figure 6.23. Other reservoir properties are similar to the

previous example. Figure 6.24 shows the imposed production rates and the corresponding

numerically simulated pressure responses at the di�erent wells. The histograms and the
scatter-plot between � and ln(k) are shown in Figures 6.25 and 6.26. Mean and standard

deviation of reference distributions are 0.13 and 0.08 for �, and 1.38 and 2.06 for ln(k).
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Figure 6.23: Reference � and ln(k) �elds: High Nugget E�ect Example.

Correlation coeÆcient of the two distributions is 0.658. Variogram for both � and ln(k) of

the reference �elds are shown in Figure 6.27.

For the inversion, we employ the reference distributions as the global distribution infor-
mation. Static well data used in the example are shown in Figure 6.28. Realistic experi-

mental variograms could not be obtained using these static data.

The inversion was tried with a number of prior variogram models. It is not possible

to capture high spatial randomness in the inverted distributions. We have employed prior

variogram models with nugget e�ect from 0.05 to 0.75. In fact in the case of prior variogram
models with low nugget e�ect, the mismatch function in the inversion increases instead of

decreases. With a nugget e�ect of 0.75, inversion was possible however with a very poor

mismatch of 47.3.

The prior variogram model used for the run with an initial nugget of 75% is shown in

Tables 6.7 and 6.8 for � and ln(k). The data integration code was run for 7 outer iterations

using 6 � 6 (=36) master points in each iteration. CPU time for the run was only 157
seconds in a 1.8 GHz Pentium 4 personal computer. The updated variograms for � and

ln(k) are shown in Figures 6.29, 6.30, 6.31, and 6.32, for directions with azimuth 0 and 90.

The mismatch in L2 norms for each iteration is shown in Figure 6.33. The �nal L2 norm
of the pressure march was 47.3, an extremely high mismatch value. After 7 iterations, the

�nal updated variogram models are given in Tables 6.9 and 6.10 for � and ln(k).

From the perspective of the geostatistical scaling laws in the context of small scale core
data (perhaps with a nugget e�ect) and with block data (that is 104 times larger), one would

expect the nugget e�ect to smeared at the coarser scale. The heterogeneities one expects
from production data integration are large scale caused by facies/stratigraphic boundaries

or from faults. There really will be no nugget e�ect between \continuous" blocks. Moreover,

even if we believed there was a nugget e�ect at the block scale, it would almost certainly
be informed from densely spaced well log or core data. Our main task is to determine

horizontal ranges and anisotropy (including perhaps, zonal anisotropy).
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Figure 6.24: Production data (pressure and ow rates) obtained from the reference �eld: High
Nugget E�ect Example.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.5 7000 - 7000 0

2 Sph 0.45 4000 - 4000 0

Table 6.7: Prior variogram information used for �: High Nugget E�ect Example.
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Figure 6.25: Histograms of reference � and ln(k) �elds: High Nugget E�ect Example.
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Figure 6.26: Scatterplot between reference � and ln(k) values: High Nugget E�ect Example.
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Figure 6.27: Variograms of reference � and ln(k) distributions: High Nugget E�ect Example. (X
direction - dark, Y direction - light)

136



Static Well Data (Phi)

0 1000 2000 3000 4000
0

1000

2000

3000

4000

.04

.08

.12

.16

.2

.24

Static Well Data (Lnk)

0 1000 2000 3000 4000
0

1000

2000

3000

4000

-1

0

1

2

3

4

5

Figure 6.28: Static well data for � and ln(k): High Nugget E�ect Example.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.55 3500 - 3500 0

2 Sph 0.4 6000 - 6000 0

Table 6.8: Prior variogram information used for ln(k): High Nugget E�ect Example.
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Figure 6.29: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: High Nugget E�ect Example. (Direction with azimuth 0)
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Figure 6.30: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: High Nugget E�ect Example. (Direction with azimuth 90)
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Figure 6.31: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: High Nugget E�ect Example. (Direction with azimuth 0)

138



γ

Distance

Reference

0 500 1000 1500 2000 2500
.0

.4

.8

1.2

γ

Distance

Initial 

0 500 1000 1500 2000 2500
.0

.4

.8

1.2 Iteration 1

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2

Iteration 2

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 3

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 4

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2

Iteration 5

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 6

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 7

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2

Figure 6.32: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: High Nugget E�ect Example. (Direction with azimuth 90)
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Figure 6.33: Mismatch norm of data integration at each outer iteration: High Nugget E�ect
Example.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.0

1 Sph 0.95 1825 - 2049 0

2 Sph 0.05 1800 - 2016 0

Table 6.9: Final variogram model obtained for � after 7 iterations: High Nugget E�ect
Example.
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V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.044

1 Sph 0.593 1200 - 2268 0

2 Sph 0.363 1200 - 2232 0

Table 6.10: Final variogram model obtained for ln(k) after 7 iterations: High Nugget E�ect
Example.
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Figure 6.34: Reference � and ln(k) �elds: Production Data Sensitivity Example.

6.4 E�ect of Production Data

Variogram inversion requires production data having information about the reservoir het-
erogeneity. The amount of information captured in the inverted models depends on the

quality and amount of production data. Here we investigate the e�ect of the quantity of
dynamic data on updated variogram models.

We perform the inversion on a synthetic reservoir model with varying number of wells

with production data. The updated variograms models are compared and analyzed to

determine the e�ect of the amount of production data on the resulting variogram.

Consider our familiar 2D 4,000-ft square domain discretized into 40 � 40 grid cells of
100 � 100 ft. Porosity and permeability �elds are shown in Figure 6.34. The boundaries on

all four sides are no-ow boundaries. Reservoir properties are the same as those discussed

in the previous sections unless stated otherwise. There is a high porosity-permeability band
connecting the lower-left corner and upper-right corner. The histograms and the scatter-

plot between � and ln(k) are shown in Figures 6.35 and 6.36. The distribution is bimodal.

The correlation coeÆcient of the two distributions is 1.0. Mean and standard deviation of
reference distributions are 0.13 and 0.046 for �, and 0.683 and 2.108 for ln(k). Variogram for

both � and ln(k) of the reference �elds are shown in Figure 6.37. We employ the reference
distributions as the global distribution information. The prior variogram model used in this

exercise is shown in Tables 6.11 and 6.12 for � and ln(k).

We perform the inversion 3 times with production data from 4, 6 and 8 wells. The well

locations for each case are shown in Figure 6.38. Figures 6.39, 6.40, and 6.41 show the
imposed production rates and the corresponding numerically simulated pressure responses

for the 3 cases. Only the well porosity and permeability values are used for the inversion.

140



F
re

q
u

e
n

cy

Phi
.1 .12 .14 .16 .18 .2

.0

.1

.200

.3

.4

.5

.6

.7
Reference Phi Data

Number of Data 1600
mean .13

std. dev. .05
maximum .20
minimum .10

F
re

q
u

e
n

cy

Ln(k)
-.69 .31 1.31 2.31 3.31 4.31

.000

.100

.200

.300

.400

.500

.600

.700
Reference Ln(k) Data

Number of Data 1600
mean .68

std. dev. 2.11
maximum 3.91
minimum -.69

Figure 6.35: Histograms of reference � and ln(k) �elds: Production Data Sensitivity Example.
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Figure 6.36: Scatterplot between reference � and ln(k) values: Production Data Sensitivity Exam-
ple.
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Figure 6.37: Variograms of reference � and ln(k) distributions: Production Data Sensitivity Ex-
ample. (X direction - dark, Y direction - light)
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V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.55 14000 - 2000 45.0

2 Sph 0.4 13000 - 10000 45.0

Table 6.11: Prior variogram information used for �: Production Data Sensitivity Example.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.05

1 Sph 0.5 14000 - 2000 45.0

2 Sph 0.45 13000 - 10000 45.0

Table 6.12: Prior variogram information used for ln(k): Production Data Sensitivity Ex-
ample.
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Figure 6.38: Well locations for the 3 cases: 4, 6 and 8 well case.
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Figure 6.39: Production data (pressure and ow rates) obtained from the reference �eld: 4 well
case.
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Figure 6.40: Production data (pressure and ow rates) obtained from the reference �eld: 6 well
case.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.0

1 Sph 0.555 2787 - 983 45

2 Sph 0.445 925 - 194 45

Table 6.13: Final variogram model obtained for � after 11 iterations: 4 Well case.

4 Well Case

The inversion was performed for 11 outer iterations. CPU time for the run was only 213
seconds in a 1.8 GHz Pentium 4 personal computer. The updated variograms for � and

ln(k) are shown in Figures 6.42, 6.43, 6.44, and 6.45, for directions with azimuth 45 and

135. The mismatch in L2 norms for each iteration is shown in Figure 6.46. The �nal L2

norm of the pressure march was 10.91. After 11 iterations, the �nal updated variogram

models are given in Tables 6.13 and 6.14 for � and ln(k).

6 Well Case

The inversion was performed for 13 outer iterations. CPU time for the run was only 252
seconds in a 1.8 GHz Pentium 4 personal computer. The updated variograms for � and

ln(k) are shown in Figures 6.47, 6.48, 6.49, and 6.50, for directions with azimuth 45 and

135. The mismatch in L2 norms for each iteration is shown in Figure 6.51. The �nal L2

norm of the pressure march was 11.39. After 13 iterations, the �nal updated variogram

models are given in Tables 6.15 and 6.16 for � and ln(k).
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Figure 6.41: Production data (pressure and ow rates) obtained from the reference �eld: 8 well
case.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.003

1 Sph 0.86 10900 - 903 45

2 Sph 0.137 2600 - 895 45

Table 6.14: Final variogram model obtained for ln(k) after 11 iterations: 4 Well case.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.001

1 Sph 0.575 10650 - 669 45

2 Sph 0.424 500 - 31 45

Table 6.15: Final variogram model obtained for � after 13 iterations: 6 Well case.
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Figure 6.42: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: 4 Well case. (Direction with azimuth 45)

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.001

1 Sph 0.933 13100 - 922 45

2 Sph 0.066 450 - 72 45

Table 6.16: Final variogram model obtained for ln(k) after 13 iterations: 6 Well case.
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Figure 6.43: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: 4 Well case. (Direction with azimuth 135)

146



γ

Distance

Reference  

0 500 1000 1500 2000 2500
.0

.4

.8

1.2

γ

Distance

Initial 

0 500 1000 1500 2000 2500
.0

.4

.8

1.2 Iteration 1

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2

Iteration 2

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 3

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 4

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2

Iteration 5

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 6

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 7

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2

Iteration 8

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 9

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2
Iteration 10

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2

Iteration 11

Distance

G
am

m
a

      0     500    1000    1500    2000    2500
    0.0

    0.4

    0.8

    1.2

Figure 6.44: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: 4 Well case. (Direction with azimuth 45)
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Figure 6.45: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: 4 Well case. (Direction with azimuth 135)
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Figure 6.46: Mismatch norm of data integration at each outer iteration: 4 Well case.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.0

1 Sph 0.339 575 - 220 45

2 Sph 0.661 10050 - 545 45

Table 6.17: Final variogram model obtained for � after 10 iterations: 8 Well case.

8 Well Case

The inversion was performed for 10 outer iterations. CPU time for the run was only 195
seconds in a 1.8 GHz Pentium 4 personal computer. The updated variograms for � and

ln(k) are shown in Figures 6.52, 6.53, 6.54, and 6.55, for directions with azimuth 45 and
135. The mismatch in L2 norms for each iteration is shown in Figure 6.56. The �nal L2

norm of the pressure march was 27.34. After 10 iterations, the �nal updated variogram

models are given in Tables 6.17 and 6.18 for � and ln(k).

Some Conclusions on E�ect of Production Data

Production data contains information about reservoir heterogeneity. The question is how

much information we can retrieve with our developed algorithm. Having analyzed the

responses, we can de�nitely improve the variogram parameters using production data. Some
of the observations are the following.

� Variogram inversion for ln(k) is relatively better than that for �.

V. No. Type Sill Range Angle
X - Y (ft) (o)

0 Nugget 0.003

1 Sph 0.903 12000 - 934 45

2 Sph 0.094 600 - 96 45

Table 6.18: Final variogram model obtained for ln(k) after 10 iterations: 8 Well case.
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Figure 6.47: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: 6 Well case. (Direction with azimuth 45)
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Figure 6.48: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: 6 Well case. (Direction with azimuth 135)
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Figure 6.49: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: 6 Well case. (Direction with azimuth 45)
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Figure 6.50: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: 6 Well case. (Direction with azimuth 135)
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Figure 6.51: Mismatch norm of data integration at each outer iteration: 6 Well case.

� More production data will improve the inverted variogram models, provided the in-

formation is captured in the inversion. A low mismatch value is an index for such

evaluation; however, more production data increases the complexity in the nonlinear
inverse problem leading to a possible poor match.

� In spite of our objective of getting back the right variogram from production data, we

need to start with reasonable variogram models. Gradient-based algorithm requires
an initial solution close to the optimal solution.

� The quality of the inverted models depends on the in-built variogram modeling mod-
ule. It may be possible to further improve on this module by trying di�erent variogram

types.

� It might be a good idea to perform the inversion with a prior model having large
variogram range values to retrieve the anisotropy information better.

� It also seems that starting with high nugget e�ect of constant values (no prior struc-

ture) works best.

6.5 Some Remarks on Variogram Modeling Module

The in-built automatic variogram modeling module is implemented with an inverse squared

distance weighted scheme. Thus, short lag distances are given more weights than the larger

distances. Consequently, the updated variogram models do not have good match at large
distances.

The perturbation is done on variogram range �rst, then anisotropy and �nally the sill
contributions for each nested structure. This cycle is repeated until a convergence with a

criterion of threshold number of changes performed. The variograms are modeled to the

total sill equal to the variance. No perturbation is done on the variogram type.
Nugget e�ect is an important parameter for any variogram model. However in a gridded

domain, the nugget e�ect information is limited by the smallest dimension of the grid

blocks. A possible solution could be to devise an arti�cial nugget e�ect information in the
experimental variograms through the use of slopes near the origin (zero lag distance).
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Figure 6.52: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: 8 Well case. (Direction with azimuth 45)
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Figure 6.53: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for � at each outer iteration: 8 Well case. (Direction with azimuth 135)
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Figure 6.54: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: 8 Well case. (Direction with azimuth 45)
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Figure 6.55: Reference, prior and updated variograms (experimental - dotted line, model - solid
line) for ln(k) at each outer iteration: 8 Well case. (Direction with azimuth 135)
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Figure 6.56: Mismatch norm of data integration at each outer iteration: 8 Well case.
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Chapter 7

Fault Property Inversion Using
Production Data

Reservoir heterogeneity has a large e�ect on performance of a reservoir. Faults may act

as barriers creating compartmentalized reservoirs or as high conductivity conduits in an

otherwise tight reservoir system. Often, the location of such faults or fault zones are iden-
ti�ed with seismic data; however, the conductive characteristics of the fault zones cannot

be resolved with seismics. Faults may a�ect the dynamic ow responses of the reservoir
system. We develop an inversion algorithm for fault zone permeability characterization

using multiple well ow response data.

7.1 Algorithm Description

An algorithm for simultaneous inversion of porosity and permeability was developed using

a modi�ed SSC method, see Chapter 4. Here, we extend the algorithm for fault zone

permeability characterization.

The basic approach of sensitivity computation remains the same. Some master points

are assigned for fault zone cells. The properties (porosity and permeability) in these cells are

optimized in the same inner optimization loop with the other master points for unfaulted
zones. The optimal corrections for regular grid cells are propagated as before; however, the

fault zone properties are taken as averages for each fault and kept constant for every cell

representing the fault.

Thus, a methodology has been developed for simultaneous inversion of porosity and

permeability. The steps involved in this extended algorithm follow.

1. Select regular master points and fault zone master points.

2. Perform Steps (2) to (9) involved in simultaneous inversion algorithm discussed in
Chapter 4.

3. Determine and assign the weighted averaged optimal corrections to fault blocks.

4. Update initial � and y �elds.

5. Repeat Steps (1) to (4) till convergence is achieved.
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The salient idea of this algorithm is to isolate the domains - the faulted ones and the

unfaulted reservoir domain. Separate collection of master points and the constraint sets

are set up for the respective domains. Propagation of optimal master point corrections are
performed within the faulted domains by some averaging scheme, whereas for the unfaulted

reservoir domain through kriging weights.

In the following sections, we demonstrate the ability of the code to retrieve fault zone

properties with some synthetic examples. First, we discuss a sealing fault example with
only two wells. We investigate the dependence of the well locations with respect to the

fault. In one case, the wells are in the opposite side of the fault, while in the other they are

in the same side of the faults. Then, we perform the inversion of a faulted reservoir with
high permeability fault with similar two-well cases. Finally, some sensitivity studies on the

inversion process are performed.

7.2 Sealing Fault Example

A synthetic realistic example is demonstrated here to evaluate the ability of the algorithm to

characterize fault zone permeabilities from multiple well production data. Faulted reference
porosity and permeability �elds are constructed �rst. Dynamic pressure responses at a

number of wells are obtained by ow simulation.

Case A: 2 Wells on the Opposite Side of the Fault

A 2D 4000-ft square domain is discretized into 40 � 40 grid cells of 100 � 100 ft. Porosity

and permeability �elds are shown in Figure 7.1. There are 2 wells: Well W1 at the center of
the cell (28,5), and Well W2 is at (30,34) (shown in Figure 7.1). The boundaries on all four

sides are no-ow boundaries. Reservoir thickness is 100 ft, viscosity is 0.2 cp, formation
compressibility 10�6 psi�1, and well radius 0.3 ft. Figure 7.2 shows the imposed production

rates and the corresponding numerically simulated pressure responses at the two wells.

The histogram and the scatter-plot between � and ln(k) are shown in Figures 7.3 and 7.4,
respectively. Mean and standard deviation of reference distributions are 0.071 and 0.019

for �, and 1.293 and 1.277 for ln(k). The low average porosity con�rms the low storativity

of the reservoir. The correlation coeÆcient between porosity and permeability is 0.541.
A fault extends across the reservoir dividing the reservoir in two separate compartments

with one having relatively higher porosity and permeability. The fault is acting as a ow

barrier with poor fault zone petrophysical properties. The reference fault zone porosity and
ln(k) are 0.03 and -5.0. Despite the simplicity of this example, inversion of these fault zone

properties can be extremely diÆcult using multiple well production data. The reason for
diÆculty is the fact that subsurface ow is di�usive in nature. The e�ect of fault zones or

narrow streak of abnormal properties may be masked by an e�ective ensemble properties in

the region. In other words, both the scenarios of the e�ective homogenized properties and
the fault zones may give rise to similar pressure pro�le for given ow rates.

Static well data are shown in Figure 7.5. Inversion was performed using 5 � 5 (=25)
master points for reservoir models and 8 master points for fault properties. The prior

variogram models used in this run for � and ln(k) are given in Equations 7.1 and 7.2:

�(h) = 0:0 + 0:4Sph(h)
ax = 1000
ay = 3000

+ 0:6Sph(h)
ax = 9000
ay = 4000

(7.1)
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Figure 7.1: Reference faulted � and ln(k) �elds: Sealing Fault Example (Case A).
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Figure 7.2: Production data (pressure and ow rates) obtained for 2 wells from the reference �eld:
Sealing Fault Example (Case A).
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Figure 7.5: Static well data for � and ln(k): Fault Property Inversion.
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Figure 7.6: Updated � and ln(k) �elds: Sealing Fault Example (Case A).

and

y(h) = 0:0 + 0:35Sph(h)
ax = 1000
ay = 3000

+ 0:65Sph(h)
ax = 8000
ay = 4500

: (7.2)

The inverted models are obtained after 70 outer iterations (18.5 minutes in a 1.8 GHz

processor personal computer). The pressure responses in the updated porosity and perme-

ability �elds converge to the reference pressure data. These inverted models are shown in
Figure 7.6. Figure 7.7 shows the pressure values at the ten wells computed from the true

(from reference), initial and �nal updated porosity and permeability �elds. Final pressure
match is remarkable. Final average pressure mismatch (in L2 norm sense) was only 2.527

psi. The objective function values of the inversion process are shown in Figure 7.8. The

fault zone properties at all outer iterations are shown in Figures 7.9 and 7.10 for porosity
and permeability values. Updated porosity and permeability �elds at some outer iterations

of the inversion method are shown in Figures 7.11 and 7.12.
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Figure 7.7: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Sealing Fault Example (Case A).
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Figure 7.8: Objective function values of the inversion process: Sealing Fault Example (Case A).
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Figure 7.9: Fault zone � values at each outer iteration: Sealing Fault Example (Case A). (Reference
value: thicker horizontal line)
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Figure 7.10: Fault zone ln(k) values at each outer iteration: Sealing Fault Example (Case A).
(Reference value: thicker horizontal line)

Case B: 2 Wells in the Same Side of the Fault

The 2 wells are now on the same side of the faults: Well W1 at the center of the cell (28,5),
and Well W2 is at (20,34). The wells are shown in Figure 7.13. Other information and

parameters are kept unchanged. Figure 7.14 shows the imposed production rates and the

corresponding numerically simulated pressure responses at the two wells.

The inverted models are obtained after 216 outer iterations (59.5 minutes in a 1.8 GHz
processor personal computer). The pressure responses in the updated porosity and per-

meability �elds converge to the reference pressure data. These inverted models, shown in

Figure 7.15, have a similar heterogeneity distribution to the reference truth. Figure 7.16
shows the pressure values at the two wells computed from the true (from reference), initial

and �nal updated porosity and permeability �elds. The objective function values of the

inversion process is shown in Figure 7.17. Final average pressure mismatch (in L2 norm
sense) was 4.091 psi. The fault zone properties at all outer iterations are shown in Figures

7.18 and 7.19 for porosity and permeability values. Updated porosity and permeability
�elds after each outer iteration of the inversion method are shown in Figures 7.20 and 7.21.

Some Conclusions

Comparison of the two cases reveal that it is more likely that one can capture heterogeneity

information from production data when the wells are in the opposite sides of the fault and
there exists interference information in the production data. Inversion in Case B takes

a signi�cantly higher number of iterations to achieve the same order of pressure match
and consequently higher CPU time than that in Case A. In fact, fault permeability values

(see Figure 7.19) are much higher than the reference values. One can attribute the reason

for poor resolution to the fact that there is less interference information available in the
production data in Case B. Another observation is that fault permeability values are better

resolved with the production data than the porosity values.
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Figure 7.11: Updated � �elds at some iterations of the inversion process: Sealing Fault Example
(Case A).
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Figure 7.12: Updated ln(k) �elds at some iterations of the inversion process: Sealing Fault Example
(Case A).
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Figure 7.13: Reference faulted � and ln(k) �elds: Sealing Fault Example (Case B).
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Figure 7.14: Production data (pressure and ow rates) obtained for 2 wells from the reference �eld:
Sealing Fault Example (Case B).
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Figure 7.15: Updated � and ln(k) �elds: Sealing Fault Example (Case B).
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Figure 7.16: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): Sealing Fault Example (Case B).
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Figure 7.17: Objective function values of the inversion process: Sealing Fault Example (Case B).
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Figure 7.18: Fault zone � values for each outer iteration: Sealing Fault Example (Case B). (Refer-
ence value: thicker horizontal line)
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Figure 7.19: Fault zone ln(k) values for each outer iteration: Sealing Fault Example (Case B).
(Reference value: thicker horizontal line)
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Figure 7.20: Updated � �elds at some iterations of the inversion process: Sealing Fault Example
(Case B).
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Figure 7.21: Updated ln(k) �elds at some iterations of the inversion process: Sealing Fault Example
(Case B).
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Figure 7.22: Reference faulted � and ln(k) �elds: High Permeability Fault Example (Case A).

7.3 High Permeability Fault Example

In this section, we discuss the inversion of the properties of a high permeability fault. Similar
two-well cases are analyzed in this exercise. All the information are kept unchanged as in

the previous section unless stated otherwise.

Case A: 2 Wells on the Opposite Side of the Fault

The reference porosity and permeability �elds are shown in Figure 7.22. Figure 7.23 shows

the imposed production rates and the corresponding numerically simulated pressure re-
sponses at the two wells. The histogram and the scatter-plot between � and ln(k) are

shown in Figures 7.24 and 7.25, respectively. Mean and standard deviation of reference

distributions are 0.073 and 0.018 for �, and 1.661 and 1.131 for ln(k). The low average
porosity con�rms the low storativity of the reservoir. The correlation coeÆcient between

porosity and permeability is 0.462. The fault location is the same as in the previous section.

The reference fault zone porosity and ln(k) are 0.1 and 7.0.
The inverted models are obtained after 95 outer iterations (23.2 minutes in a 1.8 GHz

processor personal computer). The pressure responses in the updated porosity and perme-

ability �elds converge to the reference pressure data. These inverted models are shown in
Figure 7.26. Figure 7.27 shows the pressure values at the ten wells computed from the true

(from reference), initial and �nal updated porosity and permeability �elds. Final pressure
match is remarkable. Final average pressure mismatch (in L2 norm sense) was only 5.55

psi. The objective function values of the inversion process are shown in Figure 7.28. The

fault zone properties at all outer iterations are shown in Figures 7.29 and 7.30 for porosity
and permeability values. Updated porosity and permeability �elds at some outer iterations

of the inversion method are shown in Figures 7.31 and 7.32.

Case B: 2 Wells in the Same Side of the Fault

The wells are shown in Figure 7.33. Figure 7.34 shows the imposed production rates and

the corresponding numerically simulated pressure responses at the two wells. The inverted
models are obtained after 100 outer iterations (25.2 minutes in a 1.8 GHz processor personal

computer). The pressure responses in the updated porosity and permeability �elds converge
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Figure 7.23: Production data (pressure and ow rates) obtained for 2 wells from the reference �eld:
High Permeability Fault Example (Case A).
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Figure 7.24: Histograms of reference � and ln(k) �elds: High Permeability Fault Example (Case
A).
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Figure 7.25: Scatterplot of reference � and ln(k) distributions: High Permeability Fault Example
(Case A).
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Figure 7.26: Updated � and ln(k) �elds: High Permeability Fault Example (Case A).
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Figure 7.27: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): High Permeability Fault Example (Case A).
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Figure 7.28: Objective function values of the inversion process: High Permeability Fault Example
(Case A).
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Figure 7.29: Fault zone � values at each outer iteration: High Permeability Fault Example (Case
A). (Reference value: thicker horizontal line)
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Figure 7.30: Fault zone ln(k) values at each outer iteration: High Permeability Fault Example
(Case A). (Reference value: thicker horizontal line)
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Figure 7.31: Updated � �elds at some iterations of the inversion process: High Permeability Fault
Example (Case A).
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Figure 7.32: Updated ln(k) �elds at some iterations of the inversion process: High Permeability
Fault Example (Case A).
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Figure 7.33: Reference faulted � and ln(k) �elds: High Permeability Fault Example (Case B).

to the reference pressure data. These inverted models, shown in Figure 7.35, have a similar
heterogeneity distribution to the reference truth. Figure 7.36 shows the pressure values at

the two wells computed from the true (from reference), initial and �nal updated porosity
and permeability �elds. The objective function values of the inversion process is shown in

Figure 7.37. Final average pressure mismatch (in L2 norm sense) was 3.002 psi. The fault

zone properties at all outer iterations are shown in Figures 7.38 and 7.39 for porosity and
permeability values. Updated porosity and permeability �elds after each outer iteration of

the inversion method are shown in Figures 7.40 and 7.41.

Some Conclusions

For the high permeability fault, the inversion outcomes with both the cases changing the

well locations show that reservoir heterogeneity is not captured well as in the situation with
sealing faults. However, the objective values do converge faster in this case. Analyzing the

objective function values (Figures 7.28 and 7.37), it is evident that jump in the values are

drastic in this case. The reason for such jumps may be attributed to the erratic nature
of the fault porosity values. There is clearly no convergence in the fault porosity values

(Figures 7.29 and 7.38).

The other observation is that both the well location cases show similar nature of inverted
outcomes. It is intuitively expected because with high permeability fault the well locations

will not matter much. The wells will almost be in instantaneous communication with each

other.

7.4 Sensitivity Studies

Sensitivity of the inversion solution to certain parameters in the inversion process was

investigated. The sensitivity to prior fault zone ln(k) values and the number of fault zone
master points are discussed below. Some general inversion related sensitivity studies were

performed in Chapters 4 and 5.
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Figure 7.34: Production data (pressure and ow rates) obtained for 2 wells from the reference �eld:
High Permeability Fault Example (Case B).
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Figure 7.35: Updated � and ln(k) �elds: High Permeability Fault Example (Case B).
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Figure 7.36: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): High Permeability Fault Example (Case B).
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Figure 7.37: Objective function values of the inversion process: High Permeability Fault Example
(Case B).
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Figure 7.38: Fault zone � values for each outer iteration: High Permeability Fault Example (Case
B). (Reference value: thicker horizontal line)
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Figure 7.39: Fault zone ln(k) values for each outer iteration: High Permeability Fault Example
(Case B). (Reference value: thicker horizontal line)

Sensitivity to Prior Information

For the inversion of the fault properties, the code requires inputs of a priori fault zone ln(k)
and �, which may a�ect on the inversion solution. For the base case, we have the result of

sealing fault example Case A (that is, the wells are in the opposite side of the fault). For the

base case, we used a priori fault zone ln(k) of -1.0 and � of 0.01. In this sensitivity study,
we employed in one run ln(k) value of 1.0 and � of 0.01, while in another run these values

were 1.0 and 0.1. Figures 7.42 and 7.43 show the updated porosity and permeability �elds.
These �gures should be compared with Figure 7.6. Inverted fault zone ln(k) and � values

at each outer iteration of the inversion process are shown in Figures 7.45 and 7.46 for the

three cases. The number of outer iterations for the convergence were 166, 124 and 70 for
the three cases. Objective function values at each outer iteration are shown in Figure 7.44

for the cases. Corresponding �nal objective function L2 norm values are 2.573, 2.843 and

2.527, respectively. It should be mentioned that the fault zone ln(k) and � in the reference
�eld are -5.0 and 0.03. Analyzing Figures 7.45 and 7.46 and the �nal objective function

values that the inversion outcomes are more or less robust to prior information.

Sensitivity to Number of Fault Zone Master Points

We performed a sensitivity study to number of fault zone master points. Most of the

results shown in this work are done with 8 master points for the fault zone. We analyze the
inversion solution with 6, 8 and 10 fault zone master points. For this sensitivity exercise,

we again use the sealing fault exercise Case A (where we used 8 master points) as the base

case.

Figures 7.47 and 7.48 show the updated porosity and permeability �elds for the two
cases with 6 and 10 master points. Inverted fault zone ln(k) values at each outer iteration

of the inversion process are shown in Figure 7.50 for the three cases. Corresponding inverted
fault zone � values are shown in Figure 7.51. It is evident from this �gure that fault zone

porosity inversion is not very robust. The number of outer iterations for the convergence

were 102, 128 and 70 for the three cases. Objective function values at each outer iteration
are shown in Figure 7.49 for the cases. Corresponding �nal objective function L2 norm

values are 2.598, 2.087 and 2.527, respectively. It should be mentioned that the fault zone
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Figure 7.40: Updated � �elds at some iterations of the inversion process: High Permeability Fault
Example (Case B).
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Figure 7.41: Updated ln(k) �elds at some iterations of the inversion process: High Permeability
Fault Example (Case B).
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Figure 7.42: Updated � and ln(k) �elds: A Priori Fault Zone ln(k) of 1.0 and � of 0.01.
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Figure 7.43: Updated � and ln(k) �elds: A Priori Fault Zone ln(k) of 1.0 and � of 0.1.

185



Objective function values

Prior Lnk 1.0, Phi 0.01

Outer Iteration #

O
b

je
ct

iv
e 

fu
n

ct
io

n
 v

al
u

es

      0      40      80     120     160
0.001

0.01

0.1

1

10 Prior Lnk 1.0, Phi 0.1

Outer Iteration #

O
b

je
ct

iv
e 

fu
n

ct
io

n
 v

al
u

es

      0      40      80     120
0.001

0.01

0.1

1

10

Case A: Prior Lnk -1.0, Phi 0.01

Outer Iteration #

O
b

je
ct

iv
e 

fu
n

ct
io

n
 v

al
u

es

     0     10     20     30     40     50     60     70
0.001

0.01

0.1

1

10

Figure 7.44: Objective function values at each outer iteration for di�erent a priori values.
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Figure 7.45: Fault zone ln(k) values at each outer iteration for di�erent a priori values. (Reference
value: thicker horizontal line)
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Figure 7.46: Fault zone � values at each outer iteration for di�erent a priori values. (Reference
value: thicker horizontal line)

ln(k) and � in the reference �eld are -5.0 and 0.03. Analyzing Figures 7.50 and 7.51 and

the �nal objective function values that the inversion outcomes are more or less robust to
number of master points.

7.5 E�ect of Production Data

In this section, we investigate how production data a�ects the inversion of fault properties.

We perform the inversion with production data from 3 and 4 wells. We employ similar

parameters as in the sealing fault (Case A) exercise apart from the production data. The
well locations for both the cases are shown in Figure 7.52.

3 Well Case

The 3 wells are: W1 at the center of the cell (28, 5), W2 at (30, 34), and W3 at (20,

34). Figure 7.53 shows the imposed production rates and the corresponding numerically

simulated pressure responses at these wells. The inversion was run for 293 outer iterations.
CPU time for the run was only 80.1 minutes in a 1.8 GHz Pentium 4 machine. The pressure

responses in the updated porosity and permeability �elds converge to the reference pressure
data. These inverted models are shown in Figure 7.54. Figure 7.55 shows the pressure

values at the three wells computed from the true (from reference), initial and �nal updated

porosity and permeability �elds. The objective function values of the inversion process is
shown in Figure 7.56. Final average pressure mismatch in L2 norm sense was 2.054 psi. The

fault zone properties at all outer iterations are shown in Figures 7.57 and 7.58 for porosity
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Figure 7.47: Updated � and ln(k) �elds honoring production data, local hard data, global distri-
bution, prior variography information and prior fault zone ln(k) of -1.0 with 6 Master Point Case.
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Figure 7.48: Updated � and ln(k) �elds: 10 Master Point Case.
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Figure 7.49: Objective function values at each outer iteration for varying number of master points.
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Figure 7.50: Fault zone ln(k) values at each outer iteration for varying number of master points.
(Reference value: thicker horizontal line)
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Figure 7.51: Fault zone � values at each outer iteration for varying number of master points.
(Reference value: thicker horizontal line)
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Figure 7.52: Well locations for 3 and 4 well cases.
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Figure 7.53: Production data (pressure and ow rates) obtained from the reference �eld: 3 Well
Case.

and permeability values. Updated porosity and permeability �elds at some outer iterations
of the inversion method are shown in Figures 7.59 and 7.60.

4 Well Case

The 4 wells are: W1 at the center of the cell (28, 5), W2 at (30, 34), W3 at (20, 34), and

W4 at (36, 20). Figure 7.61 shows the imposed production rates and the corresponding
numerically simulated pressure responses at these wells. The inversion was run for 226

outer iterations. CPU time for the run was only 62.5 minutes in a 1.8 GHz Pentium 4
machine. The pressure responses in the updated porosity and permeability �elds converge

to the reference pressure data. These inverted models are shown in Figure 7.62. Figure

7.63 shows the pressure values at the four wells computed from the true (from reference),
initial and �nal updated porosity and permeability �elds. The objective function values of

the inversion process is shown in Figure 7.64. Final average pressure mismatch in L2 norm
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Figure 7.54: Updated � and ln(k) �elds: 3 Well Case.
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Figure 7.55: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): 3 Well Case.
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Figure 7.56: Objective function values of the inversion process: 3 Well Case.
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Figure 7.57: Fault zone � values for each outer iteration: 3 Well Case. (Reference value: thicker
horizontal line)
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Figure 7.58: Fault zone ln(k) values for each outer iteration: 3 Well Case. (Reference value: thicker
horizontal line)
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Figure 7.59: Updated � �elds at some outer iterations: 3 Well Case.
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Figure 7.60: Updated ln(k) �elds at some outer iterations: 3 Well Case.
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sense was 3.217 psi. The fault zone properties at all outer iterations are shown in Figures

7.65 and 7.66 for porosity and permeability values. Updated porosity and permeability

�elds at some outer iterations of the inversion method are shown in Figures 7.67 and 7.68.

Conclusion

In this chapter, we discussed our algorithm for fault property inversion and its capability

to capture reservoir heterogeneity as well as fault properties. The inversion outcomes using

di�erent exercises discussed are remarkable. It appears that in the initial outer iterations
reservoir heterogeneity is resolved. Information for fault properties are captured at the later

outer iterations. This is evident from the objective function value curves for all the above

exercises. Inversion of reservoir properties are better resolved for sealing fault when the
production data have interference information as in Case A. Inversion outcomes are robust

to number of master points or a priori fault zone information. Amount of production data
may not a�ect the inversion results as long as the interference information is available.
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Figure 7.61: Production data (pressure and ow rates) obtained from the reference �eld: 4 Well
Case.
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Figure 7.62: Updated � and ln(k) �elds: 4 Well Case.
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Figure 7.63: Pressure responses computed from initial (dashed lines) and updated (bullets) � and
ln(k) �elds with the true data (solid lines): 4 Well Case.
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Figure 7.64: Objective function values of the inversion process: 4 Well Case.
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Figure 7.65: Fault zone � values for each outer iteration: 4 Well Case. (Reference value: thicker
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Figure 7.67: Updated � �elds at some outer iterations: 4 Well Case.
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Figure 7.68: Updated ln(k) �elds at some outer iterations: 4 Well Case.
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Chapter 8

Discussion and Future
Developments

Realistic reservoir description for the purpose of subsurface uid ow simulation is a long-

standing problem. Reality can only be attained with a correct uid ow model and a
reservoir description obtained through exhaustive measurement and sampling technique.

This is prohibitive. Since the eighties, the industry has recognized the need for reservoir
characterization with dynamic data. Dynamic data integration, in the name of history

matching, has been applied since the beginning of the ow simulation. Of course, there

are certain basic di�erences between the two. In dynamic data integration, the primary
objective is to construct geologically realistic high resolution reservoir models. The uncer-

tainty due to insuÆcient data should be reduced by a reasonable extent. There has been a

tremendous amount of e�ort and research dollars spent on this problem. To date, none of
the methods or techniques can claim to be suitable for any generalized reservoir scenario.

8.1 Discussion

This research involved the development of some methods for dynamic data integration in

reservoir characterization. The developed algorithms appear to be quite promising with
their eÆciency and ability to integrate a variety of data. Uncertainty analysis by construct-

ing equally likely multiple realizations has not been the focus of this work; however, this

could be performed using the methods discussed here.
Chapter 4 describes an algorithm for simultaneous inversion of � and ln(k). The algo-

rithm extends the SSC technique [202]. The algorithm involves

� 2D, single phase ow simulation through �nite di�erencing,

� inner optimization through gradient projection method,

� constraint determination using initial model, and a priori mean and variance, and

� optimal correction propagation of � by simple kriging, and of ln(k) by collocated

kriging

The spatial porosity and permeability variation can be identi�ed with less uncertainty by
integrating available static and dynamic information from di�erent sources including pro-

duction data. A number of sensitivity studies have been performed. Some controls in the
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inversion process have been identi�ed. Some of the �ndings from the illustrated examples

and sensitivity analyses in Chapters 4 and 5 include:

� inversion with only production data and prior variography information may not be

suÆcient to capture heterogeneity features

� global distribution information is important in inversion performance

� minimum pressure mismatch criterion by itself may not lead to the best inverted
model attainable

� unrealistic initial porosity and permeability �elds may a�ect the inversion responses

� constraints are important for the overall inversion process

� number of master points a�ects the solution. Inversion with too few master points

may lead to poor inversion; on the contrary, inversion with too many master points

increases the execution time and at the same time may not guarantee better inversion
solution

� increasing the frequency of master point location updating may reduce the possibility

of getting stuck in local minima, but may not guarantee it

� prior variography information can be critical to inversion performance.

It was found that prior variogram information is critical in inversion performance. This

is clearly a limitation because there are only well data to infer good prior variogram models.
In order to eliminate this problem a variogram updating module is incorporated within the

inversion algorithm. Chapter 6 extends the algorithm developed in Chapter 4 with a module
facilitating variogram calculation and modeling. Better inversion outcomes were obtained

using this code.

A spin-o� of the modi�ed algorithm is the ability to perform modeling and uncertainty

analysis in variography using this algorithm. It is not possible to model reasonably good
horizontal variograms in the common situation of a few wells. Expert modeler would use

experience or analogue information to get around this very important aspect of reservoir
modeling. This is a technique to address the problem by using information available from

production history or well test data. Results proved encouraging.

Chapter 7 describes a developed algorithm for the inversion of fault property as well

as the reservoir porosity and permeability. Equivalent petrophysical properties in the fault
blocks were the focus of the algorithm. The inversion results were found to be interesting.

It appears that during the initial outer iterations reservoir heterogeneity is resolved. Infor-
mation for fault properties are captured at a later stage. Inversion of reservoir properties

are better resolved for sealing fault when the production data have interference information.

Amount of production data may not a�ect the inversion results as long as the interference
information is available. Inversion outcomes are robust to number of master points or a

priori fault zone information.
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8.2 Limitations

Review of any work cannot be complete unless one upholds the limitations of the approaches

employed. Certainly, there are number of limitations in the algorithms developed and the

philosophy of the research. Some of these are discussed below.

� Working only with synthetic models cannot be a good way to evaluate the capability
of the algorithms developed. One has to address the issues with `real' data. In all the

illustrated examples, the production data used for inversion runs are obtained using

the similar forward simulator that is built into the inversion code. This naturally
makes the problem well-posed to some extent.

� Good production data with interference information are rarely available. Also, in
some of the examples quite a few blocks with hard data are considered. This may not

happen in reality.

� Determination of the porosity gradients from the permeability gradients and the cor-

relation coeÆcient leads to a more or less deterministic approach of obtaining the
gradients. Although correlation coeÆcients are measures of scatter in the bi-variate

distribution, their values are �xed. This cannot bring in the stochasticity in the esti-
mation of the gradients. Some of the illustrations used in this research con�rm this

problem.

� Simultaneous optimization of parameters (here porosity and permeability) of di�erent

order of magnitudes can lead to artifacts in the inversion.

� Selection of master points is not implemented in a manner that will lead to eÆcient

inversion.

� Variogram �tting module does not assign the number or the type of variogram struc-
tures. This is certainly a limitation of the algorithm.

� Within a fault system, the petrophysical properties are considered constant that may

not be true. Also, fault locations are considered known. No uncertainty study was

performed addressing this issue.

� Reservoir ow simulation approaches, gridding issues, scalings issues are not addressed

in the research adequately.

� Uncertainty analysis for future reservoir performance prediction has not been per-
formed. Although this is not a limitation of the implementation, but the content of

the work.

8.3 Recommended Future Developments

Notwithstanding the progress made in this work, there is still a lot to achieve in this area of

research. Complex reservoir scenarios with changing conditions are yet to be characterized

properly or eÆciently. Moreover, no practical case study is shown. Even the available
techniques are devoid of the level of sophistication and versatility required for realistic

application.
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Envisaging the limitations and the range of applicability of the methods, the future

course could consider the following avenues:

� A logical extension of the developed algorithms presented in this research would be

to explore more rigorous ways to propagate the master point corrections to the entire
domain. Multiple-point normal equations could be a viable option.

� Inversion with production data where few actual pressure measurements are available,
or where only ow rate information is available should be investigated in greater detail.

� Object-based modeling, surface-based modeling techniques could be integrated into

inversion algorithms using dynamic data.

� Incorporation of unstructured grids, local grid re�nement in the inversion algorithms

can be a logical extension in future research undertakings.

� Extensive 3D reservoir characterization with dynamic data has not yet found its place

in practice. It is necessary for more practical use of this method to model separated-
layer geology when production data such as production rate pro�les along the bore

holes are available.

� Extension of the techniques to true multiphase ow that can handle mobility changes

during the course of production. Inversion using streamline methods are being devel-
oped. Finite-di�erence, �nite-element or �nite-volume formulation for the multiphase

inversion could be a more rigorous approach. However, the balance between compu-

tational cost and realistic simulation features needs to be resolved.

� Incorporation of hydraulic anisotropy with kx, ky and kz has not been properly im-
plemented in the inversion algorithm. It must be remarked that incorporation of the

diagonal permeability tensor will be suÆcient in most cases.

� Provision for changing well conditions through time, e.g. new drilling, recompletions,

workovers, in�lls, etc should be studied in a greater detail with more rigor. Inversion
of production data from complex wells, e.g. deviated, horizontal, multiply completed,

partially penetrated, gas-lift, etc. needs to be investigated.

� The inversion techniques should be able to handle process-speci�c reservoir situations

and drive mechanisms, e.g. reservoirs with gravity segregation drive, bottom-water

drive, edge-water drive, steam assisted gravity drainage mechanism, and waterood-
ing.

With the decline of onshore petroleum reserves, exploitation of the o�-shore reserves
is increasing. It is typical, in these situations, to have sparse information about a

large extent of the reservoirs. In the presence of such sparse data, the major issues
are boundary delineations, aquifer inux, and major heterogeneities. Complex stratig-

raphy and structures including partially transmissible faults exist in many reservoir

environment. Characterization of these reservoirs with dynamic data is challenging
as the space of uncertainty is enormous. Future research in the �eld should address

these issues.
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� With a few exceptions, almost all the inversion techniques available to date suppress

the time variation in the phase relative permeabilities and other uid properties. A

more realistic algorithm will account for such variations.

� Extension of the inversion to compositional production data is in the foreseeable

future. The reason for this is that there exists a growing tendency in the industry to
use compositional ow simulation in more and more practical cases. However, ideas

are yet to be carved in a concrete manner.

� Techniques for proper quanti�cation of the uncertainty space should be investigated

with more rigor and application.

� Most importantly, extensive �eld application and testing is required, which will stim-

ulate research into problems not yet investigated.
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Appendix A

Parameter Files in Computer
Codes

This appendix briey explains the parameters required for all the programs developed.
The programs are arranged in order of chapters in the thesis. All the codes developed are
presently for multiple-well single-phase inversion. These codes are for simultaneous inversion
of � and ln(k): ssckphi; for simultaneous inversion with variogram updating: ssckphiv;
and �nally, for fault property inversion: ssckphif. The source code, and parameter �les
may be supplied by the author on request.

A.1 Program: ssckphi

A FORTRAN program, ssckphi, implements the methodology for simultaneous inversion
of � and ln(k). This ssckphi code allows to generate porosity and permeability realizations
that honor a speci�ed spatial variation structure de�ned by histogram and variogram, yet
match dynamic multiple well production data.

The reservoir model is assumed 2-D rectangular discretized into Nx by Ny square cells
with the size of each cell being dx = dy. The grid cells are numbered as shown in Figure
A.1. Parameters required for ssckphi are given below:

� data: the �le with local well conditioning � and ln(k) data.

� ixl, iyl, ivrlph, ivrrlph, ivrlk, ivrrlk: the column numbers for x, y coordinates,
�, error in �, ln(k) and error in ln(k).

� ntmedph, ntmedk, nwell: the number of �, ln(k) data and the number of wells
with ow data.

� itrans: the index for identifying desired histogram.

� trans: the �le with ln(k) histogram. Should be of the same scale as the SSCKPHI
model.

� ihvph,ihwtph,ihvk,ihwtk: the column numbers for �, weight of �, ln(k) and weight
of ln(k) in the desired histogram.

� parltph,parutph,parltk,parutk: lower and upper tail parameters for � and ln(k)
used in histogram transformation.

� tmsk0, vtmsk0: the apriori mean and variance of ln(k).

� tmsph0, vtmsph0: the apriori mean and variance of �.

� wellpm: the data �le with reservoir and well parameters.
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Figure A.1: Discretization and numbering of numerical reservoir model used in the ssckphi code.

� owrt: the data �le with input ow rate (STB/DAYS) and time step data.

� wellpr: the data �le with input pressure data (psia).

� bound: the data �le boundary data.

� initpr: the data �le with initial pressure (psia) for the entire reservoir in GEOEAS
format.

� seed: the data �le with initial � and ln(k) �eld in GEOEAS format.

� icolph, icolk: the column numbers for � and ln(k) in seed.

� nsim, nsim1, nsim2: the number of total, start and end realizations.

� tminph,tmaxph,tmink,tmaxk: trimming limits for � and ln(k).

� idbg: an integer debugging level between 0 and 3. The larger the debugging level,
the more information written out.

� dbg: the �le for the debugging output.
� out: the output �le for ln(k) distribution in GEOEAS format.

� obj: the output �le for normalized objective function after each iteration . The
�rst two records and the last records are total number iteration, initial normalized
objective function, �nal objective function value.

� prmtch: the output �le for pressure match responses. This gives the observed, the
initial and the updated pressures at each time step in GEOEAS format.

� nx, xmn, xsiz: the de�nition of the grid system (x axis).

� ny, ymn, ysiz: the de�nition of the grid system (y axis).
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� iseed: the random number seed.

� nmpx, nmpy: the number of master points in x and y directions.

� it gmp: the number of iterations to update master points.

� am y: the factor for de�ning the constraint interval for optimization.

� nitera, relax, dconve: the maximum number of outer iterations, dumping param-
eter and minimum tolerance.

� it min, eps3, eps4, eps5, ifobj: the optimization parameters.

� radius: the search radius (ft) in kriging.

� ndmin, ndmax: the minimum and the maximum number of samples for kriging.

� ktype: the type of kriging. (ktype=0 ordinary kriging, ktype=1: simple kriging).

� colcorr: corelation coeÆcient between � and ln(k).

� nstph and c0ph: the number of variogram structures and the isotropic nugget e�ect
for �.

� itph(i), ccph(i), angph(i), aa1ph, aa2ph: For each of the nst nested structures
one must de�ne the type of structure, the c parameter, the angle de�ning the geometric
anisotropy, the maximum horizontal range, the minimum horizontal range for �.

� nstk and c0k: the number of variogram structures and the isotropic nugget e�ect for
ln(k).

� itk(i), cck(i), angk(i), aa1k, aa2k: For each of the nst nested structures one
must de�ne the type of structure, the c parameter, the angle de�ning the geometric
anisotropy, the maximum horizontal range, the minimum horizontal range for ln(k).

A.2 Program: ssckphiv

A FORTRAN program, ssckphiv, implements the methodology for simultaneous inversion
of � and ln(k) with variogram updating. This ssckphiv code allows to generate porosity
and permeability realizations that honor a speci�ed spatial variation structure de�ned by
histogram and variogram, yet match dynamic multiple well production data. This code also
updates and model variograms.

The reservoir model is assumed 2-D rectangular discretized into Nx by Ny square cells
with the size of each cell being dx = dy. The grid cells are numbered as shown in Figure
A.1. Parameters required for ssckphiv are given below:

� data: the �le with local well conditioning � and ln(k) data.

� ixl, iyl, ivrlph, ivrrlph, ivrlk, ivrrlk: the column numbers for x, y coordinates,
�, error in �, ln(k) and error in ln(k).

� ntmedph, ntmedk, nwell: the number of �, ln(k) data and the number of wells
with ow data.

� itrans: the index for identifying desired histogram.

� trans: the �le with ln(k) histogram. Should be of the same scale as the SSCKPHIV
model.

� ihvph,ihwtph,ihvk,ihwtk: the column numbers for �, weight of �, ln(k) and weight
of ln(k) in the desired histogram.
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� parltph,parutph,parltk,parutk: lower and upper tail parameters for � and ln(k)
used in histogram transformation.

� tmsk0, vtmsk0: the apriori mean and variance of ln(k).

� tmsph0, vtmsph0: the apriori mean and variance of �.

� apriorminph,apriormaxph: the apriori minimum and maximum for � values.

� apriorminy,apriormaxy: the apriori minimum and maximum for ln(k) values.

� wellpm: the data �le with reservoir and well parameters.

� owrt: the data �le with input ow rate (STB/DAYS) and time step data.

� wellpr: the data �le with input pressure data (psia).

� bound: the data �le boundary data.

� initpr: the data �le with initial pressure (psia) for the entire reservoir in GEOEAS
format.

� seed: the data �le with initial � and ln(k) �eld in GEOEAS format.

� icolph, icolk: the column numbers for � and ln(k) in seed.

� nsim, nsim1, nsim2: the number of total, start and end realizations.

� tminph,tmaxph,tmink,tmaxk: trimming limits for � and ln(k).

� idbg: an integer debugging level between 0 and 3. The larger the debugging level,
the more information written out.

� dbg: the �le for the debugging output.
� out: the output �le for ln(k) distribution in GEOEAS format.

� obj: the output �le for normalized objective function after each iteration . The
�rst two records and the last records are total number iteration, initial normalized
objective function, �nal objective function value.

� prmtch: the output �le for pressure match responses. This gives the observed, the
initial and the updated pressures at each time step in GEOEAS format.

� nx, xmn, xsiz: the de�nition of the grid system (x axis).

� ny, ymn, ysiz: the de�nition of the grid system (y axis).

� iseed: the random number seed.

� nmpx, nmpy: the number of master points in x and y directions.

� it gmp: the number of iterations to update master points.

� am y: the factor for de�ning the constraint interval for optimization.

� nitera, relax, dconve: the maximum number of outer iterations, dumping param-
eter and minimum tolerance.

� it min, eps3, eps4, eps5, ifobj: the optimization parameters.

� radius: the search radius (ft) in kriging.

� ndmin, ndmax: the minimum and the maximum number of samples for kriging.
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� ktype: the type of kriging. (ktype=0 ordinary kriging, ktype=1: simple kriging).

� colcorr: corelation coeÆcient between � and ln(k).

� nstph and c0ph: the number of variogram structures and the isotropic nugget e�ect
for �.

� itph(i), ccph(i), angph(i), aa1ph, aa2ph: For each of the nst nested structures
one must de�ne the type of structure, the c parameter, the angle de�ning the geometric
anisotropy, the maximum horizontal range, the minimum horizontal range for �.

� nstk and c0k: the number of variogram structures and the isotropic nugget e�ect for
ln(k).

� itk(i), cck(i), angk(i), aa1k, aa2k: For each of the nst nested structures one
must de�ne the type of structure, the c parameter, the angle de�ning the geometric
anisotropy, the maximum horizontal range, the minimum horizontal range for ln(k).

� nlagph,nlagy: the number of lags used in variogram calculation for � and ln(k).

� xlagph,xlagy: lag separation distance used in variogram calculation for � and ln(k).

� xltolph,xltoly: lag tolerance used in variogram calculation for � and ln(k).

� ndirph,ndiry: the number of directions used in variogram calculation for � and
ln(k).

� azmph(i), atolph(i), bandwhph(i): For each of the ndirph directions one must
de�ne the azimuth angle, the the angle of azimuth tolerance, the bandwidth for �.

� azmy(i), atoly(i), bandwhy(i): For each of the ndiry directions one must de�ne
the azimuth angle, the the angle of azimuth tolerance, the bandwidth for ln(k).

A.3 Program: ssckphif

A FORTRAN program, ssckphif, implements the methodology for inversion of fault prop-
erty as well as � and ln(k). This ssckphif code generates fault block permeability and
porosity values and allows to generate porosity and permeability realizations that honor a
speci�ed spatial variation structure de�ned by histogram and variogram, yet match dynamic
multiple well production data.

The reservoir model is assumed 2-D rectangular discretized into Nx by Ny square cells
with the size of each cell being dx = dy. The grid cells are numbered as shown in Figure
A.1. Parameters required for ssckphif are given below:

� data: the �le with local well conditioning � and ln(k) data.

� ixl, iyl, ivrlph, ivrrlph, ivrlk, ivrrlk: the column numbers for x, y coordinates,
�, error in �, ln(k) and error in ln(k).

� ntmedph, ntmedk, nwell: the number of �, ln(k) data and the number of wells
with ow data.

� itrans: the index for identifying desired histogram.

� trans: the �le with ln(k) histogram. Should be of the same scale as the SSCKPHIV
model.

� ihvph,ihwtph,ihvk,ihwtk: the column numbers for �, weight of �, ln(k) and weight
of ln(k) in the desired histogram.
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� parltph,parutph,parltk,parutk: lower and upper tail parameters for � and ln(k)
used in histogram transformation.

� tmsk0, vtmsk0: the apriori mean and variance of ln(k).

� tmsph0, vtmsph0: the apriori mean and variance of �.

� apriorminph,apriormaxph: the apriori minimum and maximum for � values.

� apriorminy,apriormaxy: the apriori minimum and maximum for ln(k) values.

� wellpm: the data �le with reservoir and well parameters.

� owrt: the data �le with input ow rate (STB/DAYS) and time step data.

� wellpr: the data �le with input pressure data (psia).

� bound: the data �le boundary data.

� initpr: the data �le with initial pressure (psia) for the entire reservoir in GEOEAS
format.

� seed: the data �le with initial � and ln(k) �eld in GEOEAS format.

� icolph, icolk: the column numbers for � and ln(k) in seed.

� nsim, nsim1, nsim2: the number of total, start and end realizations.

� tminph,tmaxph,tmink,tmaxk: trimming limits for � and ln(k).

� idbg: an integer debugging level between 0 and 3. The larger the debugging level,
the more information written out.

� dbg: the �le for the debugging output.
� out: the output �le for ln(k) distribution in GEOEAS format.

� obj: the output �le for normalized objective function after each iteration . The
�rst two records and the last records are total number iteration, initial normalized
objective function, �nal objective function value.

� prmtch: the output �le for pressure match responses. This gives the observed, the
initial and the updated pressures at each time step in GEOEAS format.

� nx, xmn, xsiz: the de�nition of the grid system (x axis).

� ny, ymn, ysiz: the de�nition of the grid system (y axis).

� iseed: the random number seed.

� nmpx, nmpy: the number of master points in x and y directions.

� it gmp: the number of iterations to update master points.

� am y: the factor for de�ning the constraint interval for optimization.

� nitera, relax, dconve: the maximum number of outer iterations, dumping param-
eter and minimum tolerance.

� it min, eps3, eps4, eps5, ifobj: the optimization parameters.

� radius: the search radius (ft) in kriging.

� ndmin, ndmax: the minimum and the maximum number of samples for kriging.
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� ktype: the type of kriging. (ktype=0 ordinary kriging, ktype=1: simple kriging).

� colcorr: corelation coeÆcient between � and ln(k).

� nstph and c0ph: the number of variogram structures and the isotropic nugget e�ect
for �.

� itph(i), ccph(i), angph(i), aa1ph, aa2ph: For each of the nst nested structures
one must de�ne the type of structure, the c parameter, the angle de�ning the geometric
anisotropy, the maximum horizontal range, the minimum horizontal range for �.

� nstk and c0k: the number of variogram structures and the isotropic nugget e�ect for
ln(k).

� itk(i), cck(i), angk(i), aa1k, aa2k: For each of the nst nested structures one
must de�ne the type of structure, the c parameter, the angle de�ning the geometric
anisotropy, the maximum horizontal range, the minimum horizontal range for ln(k).

� nfault: the number of faults present.
� ndatf(i),facmultph(i),facmultk(i),facmultphv(i),facmultkv(i): For each of the
nfault faults one must de�ne the number of data speci�ed, apriori �, � variance,
ln(k), ln(k) variance values.

� faultdat: the input �le with fault speci�cations in GEOEAS format.

� nmpt: the number of master point used for each fault.

� faultmult: the output �le for fault multipliers.
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Appendix B

Sensitivity Analysis and Derived
Information

This chapter describes an independent study on the sensitivity coeÆcients of the simulation
responses with respect to reservoir parameters. However, it should be noted that no conclu-
sive work or message is brought forth in this appendix. However, the appendix reveals some
interesting informstion on the behavior of the sensitivity coeÆcients that may be exploited
in some future work.

B.1 Introduction

An important constituent of a research on dynamic data integration is the computation and
investigation of the sensitivities of reservoir parameters to the simulation responses. Under-
standing the behavior of these sensitivity coeÆcients is critical to dynamic data integration
in reservoir characterization.

The reservoir simulator, Eclipse, is widely used [180]. It has been used, veri�ed and
validated for numerous reservoir scenarios, and many research and reservoir management
studies have been based on the responses of this reservoir simulator. Eclipse has the
feature of reporting certain sensitivity coeÆcients.

B.2 Sensitivity Computation

The �nite-di�erence formulation of the governing ow equations for 3D 3-phase reservoir
simulation can be represented as:

F (Un+1; Un; �) = 0 (B.1)

where Un+1 = [Po Sw Sg : : : ]T at time step (n + 1), that is, the response variables to

be simulated. Let [�] = [�1 �2 � � � �M ] = [k � : : : ]T be the set of reservoir simulation
parameters, which may be the permeability vectors, porosity at all grid location. These
algebraic equations are strongly coupled nonlinear ones. Gradient based iterative techniques
used for the solution of the above equations involves:

@f

@Un+1
(U (k+1) � U (k)) = �f(U (k); Un;�) (B.2)

where the superscript k is the iteration index, while n refers to the time step.
The sensitivity coeÆcients of the response variables with respect to any parameter, �,

can be written as
@Un+1

@�
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Variable Variogram

Porosity �(h) = 0:1 + 0:9Sphax=ay=5000ft
az=15ft

(h)

Permeability k(h) = 0:3 + 0:7Sphax=ay=5000ft
az=15ft

(h)

Table B.1: Porosity and permeability variograms for the `base case' reservoir model.

which can be computed indirectly from Equation B.1 or B.2. Di�erentiation with respect
to parameter � of the ow equation (Equation B.1) leads to:

@f

@Un+1

@Un+1

@�
+

@f

@Un

@Un

@�
+
@f

@�
= 0 (B.3)

which can be rearranged to obtain

@Un+1

@�
= �

�
@f

@Un+1

��1
(
@f

@Un

@Un

@�
+
@f

@�
) (B.4)

At each time step, discretized ow equations are solved once. In other words, the Jacobian

of the ow equations,
h

@f
@Un+1

i
, is inverted only once. The sensitivity coeÆcient with respect

to any reservoir parameter � is obtained using Equation B.4. This is an eÆcient approach
as ow equations are solved only once regardless of the number of reservoir parameters.
However, the computation time increases by a factor of (0.1-0.2) times the usual run for
each sensitivity parameter depending on the complexity of the problem.

B.3 Base Case Reservoir Description

In order to investigate the behavior of computed sensitivities, a `base case' reservoir scenario
is studied. A regular grid of 64�64�16 is considered with dimensions 500 ft � 500 ft �
7.5 ft for the reservoir overlying an aquifer (grid: 64�64�2; dimensions: 500 ft � 500 ft
� 15 ft). A single structure variogram is used to generate a porosity model. Permeability
is generated using collocated cokriging using the porosity model and correlation coeÆcient
of 0.7. Variogram models used for porosity and permeability are shown in Table B.1. To
simplify the problem, anisotropy is considered only for the vertical direction by a multiplier
of 0.1. Porosity is considered to have truncated normal distribution with a mean of 10%
and variance 25%, while permeability a log-normal distribution with a mean 100 mD and
variance 1000 mD2. Aquifer properties are homogeneous with a porosity of 0.1 and a
permeability of 100 mD. The idea is to model a reservoir with a moderate bottom-water
drive. This emulates a realistic reservoir uid ow situation. Figure B.1 shows the isometric
view of the porosity model.

A simpli�ed two-phase oil-water system is employed for the simulation. The capillary
pressure and the relative permeability curves for the \base case" are shown in Figure B.2.
There is only one transition zone (layer 16) over the aquifer. Four producing wells are
considered at (X,Y) grid locations (16, 17), (45, 15), (14, 40) and (39, 47). Top 12 grids of
each are completed. For the limits of well controls, maximum oil production rate, maximum
water production rate, maximum reservoir uid volume ow rate and minimum bottom-
hole pressure are set at 5000 STBD, 1500 STBD, 5000 RBD and 1000 PSI, respectively.
It should be noted that no arti�cial well control change (e.g. well recompletions, plugging,
etc.) has been activated for the base case simulation.

For the base case simulation run, the ow responses are obtained with ECLIPSE 100.
Bottom-hole pressure, oil production rate and water-cut are shown here only for well 1 and
well 2 in Figures B.3. The history of well control changes are shown in Table B.2.
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Porosity Model (DZ*40 Reservoir Blocks; DZ*20 Aquifer Blocks)  
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Figure B.1: Porosity model for the `base case'.

Figure B.2: Relative permeability and capillary pressure curves used for the `base case'.
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Figure B.3: Flow responses for the `base case'. (BHP - Bottom-hole owing pressure, OPR - Oil
production rate
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B.4 Region Speci�cation for Sensitivity Computation

In order to compute the sensitivities, reservoir parameters must be identi�ed and their
regions de�ned. The focus here is only on the permeabilities and porosities. Originally,
the objective of the present study is to acquire as much information as possible from the
computed gradients. Their pattern, behavioral changes in time, particularly due to some
`event' during the simulation period, may capture the inuence of reservoir heterogeneity.
Regions de�nition can be `ad hoc', suitable to speci�c goals of the study. Regions can be
chosen to be oriented along some geological features that are hypothesized to be present
in the reservoir. Sensitivity of the response variables with respect to the parameters are
computed for the de�ned regions and investigated. For the base case sensitivity calculation,
�ve regions are de�ned for each parameter: transmissibility in the x�direction and pore
volume. Figure B.4 shows the region de�nition for the gradient parameters.

B.5 Typical Sensitivity CoeÆcient Behavior

For the `base case' reservoir study, the sensitivity coeÆcients are computed. Parameters
considered are transmissivity in x�direction and pore volume. Well variables for the sen-
sitivities are analyzed are well bottom-hole pressure, well oil production rate, and well
water-cut. The general behavior of the sensitivity coeÆcients can be quite complex de-
pending on the ow and reservoir complexity. Signatures of various events are often present
in the sensitivity coeÆcients. However, this depends on numerous factors and can be often
masked by the interferences of di�erent concurrent phenomena.

Figure B.5 shows the sensitivity coeÆcients computed for the `base case' for Well 1 which
is located at (16,17) in Region 1. These coeÆcients are for well bottom-hole pressure, well
oil production rate, and well water cut with respect to x�direction transmissivity of Region
1. Events A after 50 days and G after 450 days have more pronounced e�ect on the trends
as these events involve Well 1. There may be communication between the wells. The
sensitivity coeÆcients here are reported only at the speci�ed reporting intervals. A detailed
investigation is required in order to fully understand these sensitivity curves.

Results with Only One Well

A logical next approach is to decouple the problem by retaining only one well instead of
four wells for the same reservoir description. Thus, there will be no well interference. With
only Well 1 in Region 1 active, the sensitivity coeÆcients are computed. Figure B.6 shows
the gradient for Well 1 bottom-hole pressure with respect to x�direction transmissivity of
Region 1 at speci�ed reporting intervals.

Comparing Figure B.6 with Figure B.5 (top one - for bottom-hole pressure), it can be
seen that early time and late time trends are quite similar. However, there are signi�cant
dissimilarities between the two curves. This suggests that interwell communication a�ects

Event ID Days Event

A 50 Well 1 and Well 4 change from oil rate control to
reservoir uid rate control

B 74.5 Well 3 changes to reservoir uid rate control

C 100 Well 2 changes to reservoir uid rate control

D 450 Well 1 changes to water rate control

E 550 Well 4 changes to water rate control

F 600 Well 3 changes to water rate control

G 1150 Well 2 changes to water rate control

Table B.2: Well control history for the `base case' simulation with four wells.
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Figure B.4: Parameter regions de�nition for the `base case'. (Region 1: red, Region 2: green,
Region 3: blue, Region 4: light blue; Region 5: purple)
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Figure B.5: Sensitivity coeÆcients for the `base case' Well 1 bottom-hole pressure, oil production
rate, and watercut with respect to Region 1 transmissibility. Events labeled (vertical lines) A to G
are those in Table B.2.
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Figure B.6: Sensitivity coeÆcients for the `base case' (1 Well Case) Well 1 bottom-hole pressure
with respect to Region 1 transmissibility. Events labeled (vertical lines) are those in Table B.3.

Event ID Days Event

A 50 Well 1 changes from oil rate control to
reservoir uid rate control

B 450 Well 1 changes to water rate control

Table B.3: Well control history for the `base case' simulation with only Well 1.

the sensitivity coeÆcient behavior as early as about 200 days. Well events have pronounced
e�ect on the coeÆcients.

Results for Di�erent Regions

Not all wells are equally sensitive to all the regions. Sensitivity coeÆcients for regions in
which wells are located are orders of magnitude higher than other regions. Figure B.7 shows
the sensitivity coeÆcients of well bottom-hole pressure for Region 1, 2 and 5 for both cases:
`base case' with all four wells, and `base case' with only Well 1. Well 1 is in Region 1.
Thus, sensitivities with respect to parameters in Region 1 are quite large. Whereas, for the
parameters in Region 2, which is the narrow strip of region along a presumed fault plane,
well variables are almost totally insensitive. While, the variables are only slightly sensitive
to parameters in region 5. A close look at the �gure says that Well 1 bottom-hole pressure
is slightly sensitive to Region 5 transmissivity when well interferences are active. It should
be noted that these results apply to this case only.

E�ect of Reporting Speci�cation

The sensitivity coeÆcients calculated above have been computed at the speci�ed reporting
interval only. For a better interpretation, the coeÆcients may be computed at all time steps
(chopped and regular). It is observed that this can be a signi�cant factor particularly when
there are many events/phenomena happening in the subsurface ow process or there are
some occurrences of non-convergence in the solution process. Figure B.8 illustrates this
point. Gradients are computed with the same reservoir description but at all time steps.
The �gure reveals at early time when there are a few instances of chopped time steps due to
some event or problem with solution process, the trends in the gradient curves are dissimilar.
Gradients will be computed at all time steps for future investigation and analysis.
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Figure B.7: Sensitivity coeÆcients Well 1 bottom-hole pressure with respect to Region 1, 2 and 5
transmissibility (Multiple Well Case and 1 Well Case).
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Figure B.8: E�ect of reporting speci�cation on bottomhole pressure sensitivity coeÆcients.

B.6 Factors A�ecting Sensitivity CoeÆcients

Several investigations were done to determine the changes in the sensitivity coeÆcient
curves. How do these curves change when aquifer strength changes, or arti�cial well con-
trols are activated? Does heterogeneity have a signi�cant e�ect on the gradients? Are
volumes or shapes of parameter regions important in this analysis? Does well location or
grid con�guration play a role?

Strength of Aquifer

The ow process in a reservoir with a bottom-water drive can be quite complicated with
water-coning and other ow phenomena. The volume of an aquifer can be considered as
a measure of the strength of the underlying aquifer. To determine the e�ect of aquifer
strength on the sensitivity coeÆcients, the aquifer thickness is changed.

To simplify the analysis, the reservoir description with only one well is investigated.
The `base case' has an aquifer thickness of 30 feet. Keeping the reservoir description same
as in `base case', the aquifer thickness is varied from 5 feet to 100 feet. Figure B.9 shows
the sensitivity coeÆcients for Well 1 bottom-hole pressure with respect to x�direction
transmissivity of Region 1 for these 3 cases. The �gure reveals a signi�cant change in the
sensitivity coeÆcients as the aquifer strength changes.

In case of weak aquifer, well control changes only once (at 175 days) from oil rate
control mode to reservoir uid rate control mode. In fact, Well 1 does not attain water rate
control during the simulation period. This makes a signi�cant di�erence in the late time
behavior from the other two cases. Strong aquifer case has similar trends as in the `base
case'. However, the well bottom-hole pressure is less sensitive to the region transmissibility
(Region 1) when the aquifer is stronger. This is expected as pressure support will be higher
for a reservoir with a stronger aquifer support or water-drive.

E�ect of Well Control

Due to numerous management decisions, well con�gurations or modes of operations are
changed often within the life of a well. For example, a well connection may be arti�cially
shut o� at some depth when water coning occurs or is about to occur. These well control
changes drastically a�ect the sensitivity coeÆcients.

To illustrate the e�ect of well controls, reservoir description with a strong underlying
aquifer is chosen. The rationale for investigating the strong aquifer is that there are more
occurrences of well control changes because of escalated water coning. Figure B.10 reveals
signi�cant di�erences in the sensitivity coeÆcients with and without arti�cial well controls.
Event history for the case with arti�cial well control is tabulated in Table B.4. Figure B.10
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Figure B.9: Bottom-hole pressure sensitivity coeÆcients with respect to Region 1 transmissibility
for cases: weak aquifer, `base case' aquifer and strong aquifer. Events A (red): well control changes
from oil rate control mode to reservoir uid rate control mode; Events B (blue): well control changes
to water rate control mode.
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Figure B.10: Bottom-hole pressure sensitivity coeÆcients with respect to Region 1 transmissibility
for cases: one with arti�cial well controls and the other without arti�cial well control. Events A to
X are described in Table B.4.

reveals that before arti�cial well controls are activated (i.e. before 150 days) the trends are
exactly same. Once a `worst-o�ending connection' is shut o�, subsequent gradient behavior
changes signi�cantly.

It is observed that the e�ect of any particular event, as water rate control mode, is
not always the same. It depends on phase saturations, pressure level etc. An event like
connection shut-o� may cause higher oil production rate if oil phase in the vicinity has
suÆcient mobility and well bottom-hole pressure will decrease; however, when this is not
the situation, ow of both oil and water is hindered and well bottom-hole pressure increases.
The gradients show corresponding changes. Similarly, the e�ect of bottom-hole pressure
control mode can be determined. In this case, there will not be any pressure sensitivity,
but gradients of oil production rate or water-cut may change signi�cantly.

E�ect of Temporal Discretization

A study was conducted whether temporal discretization in the ow simulation a�ects the
sensitivity coeÆcients. Time steps are varied from 5 days to 200 days. In Figure B.11
sensitivity of time steps on the gradients (well bottom-hole pressure) are shown for variation
of step sizes from 50 days to 200 days. Table B.5 gives the description of the color codes
shown in Figure B.11. It is apparent from the �gure that step increments have signi�cant
e�ect on the gradients. The events are shifted forward or backward in time as time steps
are varied. One reason for this variation in the trend can be attributed to `chain e�ect' that
is a shift in any event may trigger di�erent states of uid saturation or pressure level for
the subsequent duration of the ow.

It is also evident from the �gure that coarser increments may mask some information.
However, it is found that for the reservoir heterogeneity used in these models time steps
of 50 days to 100 days will be ideal for future analysis. Less than 50 days step sizes show
erratic behavior. In terms of computational eÆciency, smaller steps will be quite expensive
as opposed to larger time steps.

E�ect of heterogeneity

One objective of investigating the sensitivity coeÆcients is to determine a set of a priori con-
straints to be used in the optimization process. In an optimization loop, reservoir properties
such as grid permeability and porosity values are modi�ed, thus changing the heterogene-
ity of the reservoir. This optimization process is computationally intensive. To make the
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Event ID Days Event

A 0 Changes from oil rate control to
reservoir uid volume rate control mode (RFVRC)

B 150 Changes to water rate control mode (WRC)

C 175 Worst o�ending connection 12 shut-o� (WOC 12)
RFVRC

D 200 WRC

E 225 WOC 11 and RFVRC

F 250 WRC

G 280.98 WOC 10

H 314.75 WOC 9

I 350 WOC 8

J 392.45 WOC 7

K 421.23 WOC 6

L 450 WOC 5

M 489.24 WOC 4 and well changes to
bottom-hole pressure control mode (WBHPC)

N 519.62 WOC 3

O 550 WOC 2

P 600 WOC 1; Well 1 completely shut-o�;
Well 1 immediately reopened;
Secondary water cut limit (0.5) activated; WRC

Q 650 WOC 12; WOC 11; WOC 10

R 1050 WOC 9

S 1400 WOC 8

T 1550 WOC 7

U 1700 WOC 6

V 1850 WOC 5

W 2000 WOC 4; WBHPC; Non-linear equation convergence failure

X 2090 WOC 3

Table B.4: Well control and event history for simulations for aquifer strength study with
arti�cial well control.

Color Code Event

Red Change from oil rate control to
reservoir uid volume rate control mode

Light Blue Change to water rate control mode

Black Worst o�ending connection shut-o� and
change to reservoir uid volume rate control mode

Blue Worst o�ending connection shut-o�

Green Worst o�ending connection shut-o� and
change to well bottom-hole pressure control mode

Table B.5: Event history in study of temporal discretization on sensitivity used in Figure
B.11.
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Figure B.11: Bottom-hole pressure sensitivity coeÆcients with respect to Region 1 transmissibility
for cases with time steps of 50, 80, 100, and 200 days. Events color coded are described in Table
B.5.
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Figure B.12: E�ect of heterogeneity on sensitivity coeÆcients with respect to Region 1 transmis-
sibility: homogeneous and heterogeneous. Events are color coded in the same manner as in Table
B.5.

algorithm eÆcient the gradients are frozen or kept unchanged for several iterations, which
one could call an inner optimization loop. To ascertain the validity of such approximate
technique one should investigate the e�ect of heterogeneity on the sensitivity coeÆcients of
the ow responses with respect to relevant reservoir properties.

Figure B.12 shows the sensitivity coeÆcients of well bottom-hole pressure with respect
to Region 1 transmissivity for a reservoir description with homogeneous properties and
heterogeneous properties. It is apparent from the �gure that heterogeneity plays a signi�cant
role in determining the gradient trends. Although not much can be explained about the
e�ect of heterogeneity, Figure B.12 reveals homogeneous properties lead to less frequent
changes in well control. However, this does not imply the variability in the gradients will
be less for homogeneous reservoirs. Further investigation is needed to quantify the e�ect of
heterogeneity on the sensitivity coeÆcients.

To quantify the e�ect of heterogeneity changes in reservoir property models in any opti-
mization procedure, a random permeability (x�direction) model is generated with a mean
of zero. This model multiplied with a scalar coeÆcient is added to a `base case' permeability
model. The sensitivity coeÆcients are computed for the new model. The random model
can be considered as a gradient direction in a gradient based optimization technique, and
the coeÆcient can be considered as the distance in this gradient direction. The coeÆcient
is varied from 0.25 to 20. Figure B.13 illustrates the e�ect of such heterogeneity changes. It
is evident from the �gure that overall trend is quite similar with the exception of some local
variation up to a coeÆcient as high as 10. This aÆrms the validity of keeping sensitivity
coeÆcients frozen in an inner optimization loop.

E�ect of Region Volume, Well Location and Grid Con�guration

Intuitively, a parameter region with a larger volume representation has greater e�ect than
a smaller one. In order to investigate this a reservoir model similar to the `base case' one is
considered with only one well at the central location. Model has 64�64�16 reservoir grids
with an underlying aquifer. Entire reservoir model is divided into two concentric regions.
Volume of the region containing the central well is varied by including 1�1 to 33�33 grid
blocks in x� and y�direction. Figure B.14 shows the e�ect of region volume on sensitivity
coeÆcients. There is a signi�cant jump in the gradient absolute values when region volume
increased from 1�1 to 3�3. However, any volume increase after that does not have any
practical e�ect on the sensitivity coeÆcients.

In order to study the e�ect of the volume location relative to the well, 9 concentric
parameter regions are speci�ed around one central well. Regions are numbered in the
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Figure B.13: E�ect of degree of heterogeneity on sensitivity coeÆcients. Changes in permeability
model obtained with a scalar coeÆcient multiplied random model added to a `base case' model. The
scalar coeÆcient is varied from 0.25 to 20.
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Figure B.14: E�ect of region volume on the well borehole pressure sensitivity coeÆcients with
respect to transmissibility of region containing the central well.
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ascending order of proximity from the well. Figure B.15 shows the borehole pressure sen-
sitivity coeÆcients for the concentric regions. It is evident from the �gure that gradient
absolute values diminish with the regions further away from the well.

Grid orientation a�ects the sensitivity coeÆcients. To mimic two di�erent grid orienta-
tions, the same reservoir model is used but with two di�erent parameter region orientations
using square and triangular regions, respectively. There are four regions in each case. The
parameter regions for the two cases are shown in Figure B.16. There are four regions in each
case. The central well is located in Region 1 in both cases. Figure B.17 shows borehole
pressure sensitivity with respect to transmissibilities of all four regions. Due to 7-point
�nite-di�erencing scheme of the ow equation, the sensitivity coeÆcients with respect to
Region 4 transmissibility are insigni�cant in this case. For regions with no neighboring cell
of well block, sensitivities to this region is insigni�cant compared to other regions.

Sensitivity CoeÆcients for Regular Parameter Regions

Implementing a multilevel technique in case of regular parameter regions will be more
systematic than for irregular regions. These techniques can be implemented at di�erent
levels of data integration with minor conforming at each level. It is worth investigating the
sensitivity coeÆcients with regular regions.

Reservoir domain of grids 64�64�16 is subdivided by regular regions of size 8�8�8.
Figure B.18 shows the sensitivity coeÆcients of Well 1 borehole pressure with respect to
regular regions at di�erent times (50, 74.5, 87.23, 100, 500, 1000, 1500 and 2000 days).
Only the top regions are shown in the �gure. A close inspection of Figure B.18 reveals
the magnitudes of the sensitivity coeÆcients are much less than those observed earlier with
only 5 regions. This reaÆrms that region volumes have signi�cant e�ect on the sensitivity
coeÆcients.

E�ect of Grid Coarsening

Dynamic data integration is an inverse problem. By nature, any inverse problem su�ers
from ill-posedness. Forms of regularization are applied in solving these problems. Solution
of the inverse problem in a �ne grid setup is virtually impossible. One form of regulariza-
tion is e�ected through an hierarchical multilevel strategy. Investigating the e�ect of grid
coarsening on the sensitivity coeÆcients is important to implement this technique.

We started with a 'base case' reservoir description having 128�128�32 grids, resem-
bling a numerical geological model of the reservoir. Dynamic data integration at this �ne
resolution model is prohibitive because of the extensive CPU requirement. Five levels of
grid coarsening are applied with model sizes 64�64�16, 32�32�16, 32�32�8, 16�16�8
and 16�16�4. Porosity values for these di�erent grids are arithmetically averaged from the
�nest resolution model. Power averaging with an index -1 (i.e. harmonic average) is applied
to obtain the permeability models. Sensitivity coeÆcients are computed with respect to 5
regions as used in the earlier studies. Figure B.19 shows the sensitivity coeÆcients of Well
1 borehole pressure with respect to Region 1 transmissibility. It is evident from the �gure
that with very coarse grid models (as the last one, here) some information is lost. However,
a close inspection reveals the overall trend remains same.

B.7 Discussion

Although nothing conclusive can be said of the study related in this appendix, it shows
some insights into the behavior of the sensitivity coeÆcients. This can be used be as
a premise for future work on dynamic data integration. Better understanding of these
coeÆcients will provide additional means of control in the parameter estimation problem
in dynamic data integration. One might exploit and develop some stochastic gradient
approximation technique for future inverse problem solution technique. Hierarchical data
integration approach may possibly bene�t from the this type of study.

Some of the derived informations from this study are discussed below.
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Figure B.15: E�ect of region volume location relative to the the well on borehole pressure gradients
with respect to transmissibility of concentric regions around a central well. Regions are numbered
in the ascending order of proximity from the well.
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Figure B.16: Parameter regions speci�ed to study the e�ect of grid orientation. Left: squares
Right: triangles. Regions are color coded as: red - Region 1; green - Region 2; blue - Region 3; light
blue - Region 4. Central Well in Region 1.

� Well bottomhole pressure, production rate are hardly inuenced by the properties of
another region.

� Well events have pronounced e�ect on the sensitivity coeÆcients. Interwell commu-
nication or well interference may a�ect these coeÆcients.

� Aquifer strength seriously a�ect the magnitude of the sensitivity coeÆcients.

� Temporal discretization has serious impact on the nature of the coeÆcients.

� Well controls can have serious impact on the gradients.

� Degree of spatial heterogeinty of petrophysical properties may not a�ect the gradients
much. This gives rise to the possibility of using stochastic gradient scheme in the
inversion process when spatial heterogeneity is varying.

� Sensitivity coeÆcients are mostly informed by the regions in the vicinity of the well-
bore.

� Inversion of complex reservoirs will encounter signi�cant level of diÆculty because of
the highly nonlinear and non-convex nature of the sensitivity coeÆcients.
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Figure B.17: E�ect of grid orientation on pressure sensitivity coeÆcient with respect to transmis-
sibility of Region 1. Region speci�cations are shown in Figure B.16
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Figure B.18: Map of sensitivity coeÆcients of the Well 1 bottom-hole pressure with respect to
transmissibility of regular regions at time steps of 50, 74.5, 87.23, 100, 500, 1000, 1500 and 2000
days. Top 8�8 regions of 8�8�2 are shown in the �gure.
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Figure B.19: E�ect of grid coarsening on sensitivity coeÆcients of the Well 1 borehole pressure
gradients with respect to transmissibility of Region 1.
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Appendix C

Inversion with Pressure Derivative
Mismatch

This appendix o�ers the mathematics related to incorporating pressure derivative mismatch
in the inversion algorithm. An implementation of inversion algorithm with backward di�er-
ence technique for derivative computation was coded.

C.1 Mathematics of Inversion with Pressure Derivative Mis-
match

In order to include the pressure derivative mismatch in the objective function for the mini-
mization problem is given by:

O =
X
i

X
t

Wp(i; t)
h
pobsi (t)� pcali (t)

i2
+
X
i

X
t

Wp0(i; t)
h
p0

obs

i (t)� p0cali (t)
i2

(C.1)

where p0
obs

i (t) and p0
cal

i (t) are the observed and simulated pressure derivatives at well i at
time t. Wp0(i; t) are weight assigned to pressure derivatives at di�erent wells and at di�erent
time. Other notations remain the same as de�ned previously in the main text of the thesis.

Now, linearization of the objective function is attained by approximating the pressure
data by retaining its �rst order Taylor expansion as shown in Equation 3.26. Using this
linearization, the updating of the objective function (C.1) follows:

O(fP calg1) = O(fP calg0) +
ntX
t=1

fDgTt f�Mg+
ntX
t=1

f�MgT [C]tf�Mg: (C.2)

which appears the same as that shown in Section 3.11. However, the matrices fDgt andfCgt are rede�ned as follows:

fDgt = 2
�
fP calgt � fP obsgt

�T
[W ]tfSgt

+ 2
�
fP calgt � fP calgt�1 � fP obsgt + fP obsgt�1

�T
[W ]t0 (fSgt � fSgt�1)

fCgt = (fSgt)T [W ]tfSgt + (fSgt � fSgt�1)T [W ]t0 (fSgt � fSgt�1)
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We employ the same de�nition of fSgt as given in Section 3.11. This implementation is
based on the backward discretization method for derivative computation, that is,

p0i(t) = �(t)
pi(t)� pi(t� 1)

�(t)� �(t� 1)
; (C.3)

where �(t) is time lapsed at interval t. The matrix [W ]t0 is computed from [W ]t and the
coeÆcients involved in the derivative computation.

Many di�erent schemes for derivative computation [153] will give rise to di�erent im-
plementations of the gradients of the objective function. Another common scheme for
derivative computation (Bourdet et al. [22]) is given by

p0i(t) = ai(t)pi(t� 1) + bi(t)pi(t) + ci(t)pi(t+ 1); (C.4)

where

ai(t) = �
ln �(t+1)

�(t)

ln �(t+1)
�(t�1) ln

�(t)
�(t�1)

;

bi(t) =
ln �(t+1)�(t�1)

�(t)2

ln �(t+1)
�(t) ln �(t)

�(t�1)

;

and

ci(t) =
ln �(t)

�(t�1)

ln �(t+1)
�(t�1) ln

�(t+1)
�(t)

:

This scheme leads to the pressure derivative vector given by the following relation

[P 0] = [B][P ];

where [B] is a tridiagonal matrix with diagonals components comprising of terms ai(t),
bi(t) and ci(t). For this scheme, the matrices fDgt and fCgt in Equation C.2 are de�ned
as follows:

fDgt = 2
�
fP calgt � fP obsgt

�T
[W ]tfSgt

+ 2
�
fP calgt � fP obsgt

�T
[B]T [W ]t[B]fSgt

fCgt = (fSgt)T [W ]tfSgt + (fSgt)T [B]T [W ]t[B]fSgt:
Similar implementation of incorporating pressure derivative data is discussed by Onur and
Reynolds [154].
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